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by inertial measurement transducer, as by its resonances.
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Introduction

Dynamic measurement theory has appeared and has been developing as a part of inverse
problems theory [1]. To investigate short-time signals that tend to appear, say, when spacecraft’s
position correction takes place, one of coauthors [2] has recommended measurement transducer
(MT) mathematical model, which priory was used within automatic control theory [3].

ẋ = Ax + Du, y = Cx (1)

Here x = x(t) is a vector-function of MT states, x = (x1, x2, . . . , xn), u = u(t) and y = y(t)
are vector-functions of measuring signal and observation respectively, u = (u1, u2, . . . , um) and
y = (y1, y2, . . . , ye). Symbols A, D and C denote matrices of MT, and observation unit respectively
of order n × n, n × m and l × n. Model (1) appeared to be adequate to mechanical inertia effect
of MT, which by itself causes graduation of measured spiked signal u. For the record it becomes
an obvious result both of real [4], and numerical experiments [5, 6].

Renewal process of the measurement u by the observation y is ill-posed problem. Thus, to
come to solution of this problem there were suggested technically explained hypothesis, as for
example, ≪sliding models≫ [7] and ≪MT regularizability≫ [8]. Moreover the solution found here
≪embodied in metall≫. Meanwhile, [9] by itself offers to investigate finding of the measurement u

by observation y by methods of optimal control theory, so that unknown observation minimizes
the functional

J(v) =
1
∑

q=0

∫ τ

0
||y(q) − y

(q)
0 ||2dt, (2)

where y0 = y0(t) is an observation received by the actual MT, the model of which is the system
(1). The minimum of the functional J is sought on a set of admissible measurements, which is
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constructed itself with regard to existing information (as a rule, incomplete) about unknown
observation. In [5, 6] there was recommended an algorithm of numerical solution to the problem
(1), (2), which has shown good approximation to exact solution on check example (u = A sin2 ωt).

But the signal measured often gets distorted not only because of MT mechanical inertia,
but also by the fact of mechanical resonances. In the real being MT would be embedded with
filters, which could have ≪cut out≫ resonant frequency of measured signal. Sometimes these filters
provoke resonance but at other frequencies; for this reason there is installed another filters to be
able to eliminate resonance arose, etc. This article is about a new model of optimal measurement,
in which MT is not only mechanically inertial but resonant as well. The essence of innovation is
that the functional (2) has been intruded with one more term, that standed for resonance filters.
Thus, as it often happens in virtual cases, the suggested model do not cause secondary resonance.

Except for Introduction this article contains two Parts and References, which are more about
tastes and preferences of the authors but completed. In the first Part we describe theoretical
investigation of the model, whereas in the second Part we offer numerical algorithm for finding
of distorted measurement.

1. Optimal measurement with regard to interia and resonaces

We consider model MT to be an ordinary differential equations system of the Leontief type
(briefly the Leontief type system) [10]

Lẋ = Mx + Du, (3)

y = Nx, (4)

where x = (x1, x2, . . . , xn) and ẋ = (ẋ1, ẋ2, . . . , ẋn) are vector-functions of MT states and
velocities of MT states changes respectively, L and M denote matrices of order n, corresponding
to correlation of states and velocities of states respectively. Moreover we assume that det L = 0,
as in another case system (3) it is possible to represent in more simple form. Further, u =
(u1, u2, . . . , un) and y = (y1, y2, . . . , yn) are vector-functions of measurements and observations
respectively. We emphasize, that parameters of measurements and observations have more than
one, as for example, in the theory of automatic control (1). Naturally, we can not measure
parameters more than number of parameters of MT states, but number of measurements and
observations parameters is possible to decrease setting equal to zero corresponding components
of measurement u = (u1, u2, . . . , un) and observation y = (y1, y2, . . . , yn) vector-functions
respectively. Finally, D and N are matrices of order n, characterizing correlation of measurement
parameters and connection between MT state and observation respectively. It is clear if some
components of vector-function u are equal to zero, then corresponding lines of the matrix N must
be completed by zeros. Obviously, model (3), (4) is more general then (1).

The Leontief type systems are finite-dimensioned cases of the Sobolev type equations.
Therefore, we shall under investigation use ideas, methods and results of general theory [11,
ch. 2], which are adapted to finite-dimensional situation. Following [10], matrix M is called L-
regular, if there exists a number α ∈ C such that det(αL − M) 6= 0. If matrix M is L-regular,
then there exists a number p ∈ {0} ∪ N which is equal to zero, if in the point ∞ L-resolvent
(µL − M)−1 of matrix M has removable singularity; and p is equal to pole order of matrix-
function (µL − M)−1 in another case. Taking this into account, we will name L-regular matrix
M (L, p)–regular, p ∈ {0} ∪ N.

Next, let matrix M be (L, p)-regular, p ∈ {0}∪N. For the system (4) we set up the Showalter
– Sidorov problem

[

RL
α(M)

]p+1
(x(0) − x0) = 0 (5)
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under any x0 ∈ R
n, α ∈ ρL(M) = {µ ∈ C : det (µL − M) 6= 0}. Here RL

µ(M) = (αL − M)−1 L

is right L-resolvent of matrix M . We do not explain preferences of this problem by comparison
of the traditional Cauchy problem x(0) = x0. By opinions a number of authors [12 – 14] the
Showalter – Sidorov problem for the Sobolev type equations is more natural then the Cauchy
problem, in which it coinsides in the case det L 6= 0. Besides that, preferences of problem (5) in
calculations are noted in [5, 6]. Finally point out useful generalization [15] of the problem (5).

Let us fix τ ∈ R+ and introduce into consideration state space
X = {x ∈ L2 ((0, τ) , Rn) : ẋ ∈ L2 ((0, τ) , Rn)}, measurement space U =
{

u ∈ L2 ((0, τ), Rn) : u(p+1) ∈ L2 ((0, τ), Rn)
}

and observation space Y = N [X]. There is
not always that Y = X, but it is always that Y is isomorphic to some subspace in X. Let us
separate in U a closed and convex subset U∂ (a set of admissible measurements), and set of the
optimal measurement problem. We shall find a pair (y, u) ∈ Y × U∂ a.e. on (0, τ) satisfying to
equations (3), (4) under condition (5), and

J(u) = min
v∈U∂

J(v), J(v) =
1
∑

q=0

τ
∫

0

∥

∥

∥y(q)(t) − y
(q)
0 (t)

∥

∥

∥

2
dt+

+

p+1
∑

q=0

τ
∫

0

〈Fqv
(q)(t), v(q)(t)〉dt.

(6)

Here y0(t) = (y01(t), y02(t), . . . , y0n(t)) is an observation obtained on real experiment, i.e. taking
down to real MT, model of which is systems (3), (4); ‖ · ‖ is Euclidien norm of the space R

n;

v(q)(t) = (v
(q)
1 (t), v

(q)
2 (t), . . . , v

(q)
n (t)) is possible measurement from U∂ and its derivatives; Fq ∈

L(U) is self-adjoint and positive definite operators, q = 0, 1, . . ., p + 1, 〈·, ·〉 is Euclidien scalar
product in R

n. We shall name this optimal measurement problem the problem (3) – (6) for brevity.
The problem (3) – (6) in Hilbert spaces and in more general statement (in particular, there

had been equired to find the state vector-function x) was considered in [16] as ≪rigid optimal
control problem≫. Therefore, we give next result without proof, it is taken from [16] and is adapted
to our situation.

Теорема 1. Let matrix M be (L, p)–regular, p ∈ {0} ∪ N, τ ∈ R+, with detM 6= 0. Then for
any x0 ∈ R

n, y0 ∈ Y there exists a unique solution (y, u) ∈ Y × U∂ to the problem (3) – (6),
where y = Nx, and

x(t) = lim
k→∞





p
∑

q=0

(

M−1
(

(

kLL
k (M)

)p+1
−In

)

L
)q

M−1
(

In−
(

kLL
k (M)

)p+1
)

(Du)(q)(t)+

+

(

(

L −
t

k(p + 1)
M

)−1

L

)k(p+1)

x0+

+

∫ t

0

[

(

L−
t − s

k(p + 1)
M

)−1

L

]k(p+1)−1
(

L−
t − s

k(p + 1)
M

)−1
[

kLL
k (M)

]p+1
(Du(s)) ds



 .

Let us say that condition detM 6= 0 does not reduce the generality of the problem under
discussion. You can see if matrix M is (L, p) – regular then we turn after replacement x = eλtv

to equation Lv̇ = (M − λL)v + Du which is at the same form as (3), but det(M − λL) 6= 0.
We note also, that solution (y, u) of the problem (3) – (6) existing by theorem 1 we shall name
further the exact solution.
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2. Algorithm of numerical finding of dinamically distorted signals

We restrict ourself to particulare case under construction of our algorithm. In the first place
we suppose that τ = π, in the second place we assume that the values of the measurement at the
beginning and at the end of the interval [0, τ ] are equal to zero. Both assumptions simplify the
techiques of an algorithm and easily eliminate under passage to general case. Thus, let the matrix
M be (L, p)-regular, p ∈ 0 ∪ N, with detM 6= 0. By theorem 1 approximate solution

(

yk, u
l
k

)

to
the problem (3) – (6) we will seek in the form

xk(t) =
p
∑

q=0

(

M−1
(

(

kLL
k (M)

)p+1
−In

)

L
)q

M−1
(

In−
(

kLL
k (M)

)p+1
)

(Dul
k)

(q)(t)+

+

(

(

L − t
k(p+1)M

)−1
L

)k(p+1)

x0+

+
m
∑

j=0





(

(

L−
t − sj

k(p + 1)
M

)−1

L

)k(p+1)−1
(

L−
t − sj

k(p + 1)
M

)−1
[

kLL
k (M)

]p+1 (
Dul

k(sj)
)



 cj ,

(7)

Here sj and cj are paints and weights of the Gauss quadrature formula respectively, j = 0, 1, . . .,
m, with k = max {k1, k2}, where

k1 >
1

α

n
∑

l=q+1

|al| + 1, k2 >
1

|aq| (n − q)n−q

q
∑

l=0

|al| (n − q + 1)n−l + 1, |t| < 1,

t ∈ [0, 1], α > max

{

1, |aq|
−1

(

q
∑

l=0

|al|

)}

, al are coefficients of the polynom det(µL−M), q ≤ n

is its order. You can see in [17] verification of this choice. Vector x0 ∈ R
n is the same as in (5),

it is supposed furthe fixed.
For finding ul

k = ul
k(t) we remark first of all that the space U is separable by construction.

Hence there exists a sequence
{

Ul
}

of finite-dimensional subspaces Ul ⊂ U monotonically

exhausting the space U, i.e. Ul ⊂ Ul+1 and
∞
⋃

l=1

Ul is dense in U. There fore ul
k = ul

k(t) we shall find

ul
k = ul

k(t) among vectors of the form

ul = col





l
∑

j=0

a
j
1 sin jt,

l
∑

j=0

a
j
2 sin jt, . . . ,

l
∑

j=0

aj
n sin jt



 .

Let us introduce one more simplifying assumption. Let there exists exactly one frequency ω under
which MT resonant. If values of u at points 0 and π are equal zero then ω ∈ N. Let amplitude of
this MT resonance be Aω (since Aω is taking off real MT then we assume Aω ∈ (0, +∞)). Now
we construct one of terms of functional J from the formula (6)

〈F0u
l, ul〉 = 〈col







l
∑

j=0

j 6=ω

a
j
1 sin jt + Aωaω

1 sin ωt,

l
∑

j=0

j 6=ω

a
j
2 sin jt + Aωaω

2 sin ωt, . . . ,
l
∑

j=0

j 6=ω

a
j
n sin jt + Aωaω

n sinωt






, ul〉.

(9)

Let us note that so constructed operator F0 is selfadjant in the first place, and it is positive
definite in the second place. Besides that let us remart that the number l ∈ N in (8) and (9) must
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be greater then l ≥ ω. If MT resonant not only under mode sinωt, but under its derivatives, then
we construct operator Fq by analogy with (9). If it is not then we set 〈Fqu

l(q), ul(q)〉 = 〈ul(q), ul(q)〉.
Now we substitute (8) into (7) and result multiplied by matrix N together with (9) substitute into
(8). After calculations we obtain a functional J l = J l(a), where a = (a1

0, . . . , a
l
0, . . . , a

1
n, . . . , al

n) is
a vector of coefficients of trigonometric polynoms from (8). Finally we return to a set of admissible
measurements U∂ . As a rule it is in applications not only closed and convex but bounded yet.
If a set U∂ is closed, convex and bounded, then there exists a sequence of convex compact sets
{

Ul
∂

}

, Ul
∂ ⊂ Ul, monotonically exhausting the set Ul. Under our conditions we can construct

convex compact set into a set of vectors {a}, which is isomorphic to the set Ul
∂ . Further it is

convenient to denote constructed compact set by the same symbol Ul
∂ . Thereupon the functional

J l is continuous on a set Ul by construction, then it has a minimum on Ul
∂ by the Weierstrass

theorem. We obtain ul
k by substituting coefficients of found minimum in (8), since we obtain yk

by substituting ul
k in (7) and multiplying result by matrix N . We name such pair (yk, u

l
k) an

approximate solution of the problem (3)–(6). It should be noted that because of sufficiently large
value of Aω (Aω ≫ 1) all coefficients (aω

1 , aω
2 , . . . , aω

n) turn out sufficiently small, that correspond
to influence of a filter on measurement. Let us announce next result.

Теорема 2. Let matrix M be (L, p) – regular with detM 6= 0. Let admissible measurement
set U∂ be closed, convex, and bounded. Then a sequence

{

(yk, u
l
k)
}

, k = max {k1, k2}, l > p, of
approximate solutions, k, l → ∞ converges to exact solution (y, u) under k, l → ∞ by the norm
of the space Y × U.

In conclusion we say some words about introduced assumptions. The condition τ = π takes off
corresponding renormalization of basis function frequences. The requirement of zero measurement
vales on the borders of the interval [0, τ ] is removed by introducing yet another family of the
basis functions (i.е. in the trigonometric polynomials (8) except the sinuses will be the cosinuses).
Finally, resonant mode with any freequency expanded in a Fourier basis functions, we take a
partial sum of this series, and construct (9) on the proposed prescription. All these generalizations
are only complicate the understanding of the basic idea of the algorithm, so we omnit them in
the first post.
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