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REAL SECTORIAL OPERATORS
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Sectorial operators that act in complex Banach spaces and map real subspaces into
themselves should be called real sectorial operators. These operators have already been
used implicitly in the study of various diffusion equations. Meanwhile, in the Lojasiewicz —
Simon theory which provides longtime convergence of solutions to stationary solutions,
the real valued Lyapunov functions play an important role. In order to make general
methods for studying longtime convergence problems on the basis of the Lojasiewicz —
Simon theory, it may therefore be meaningful to give an explicit definition for these real
sectorial operators and to show their basic properties that are inherited from those of
complex sectorial operators.
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Introduction

When we want to study diffusion equations, there is an advantage of handling them
in complex valued function spaces than in real valued function spaces, because the second
order elliptic operators often generate an analytic (holomorphic) semigroup in a suitable
complex Banach space. Using the techniques of functional analysis including such analytic
semigroups, construction of local or global solutions can easily be carried out, see Krein [1],
Tanabe [2|, Favini, Yagi [3] and Yagi [4]. In the meantime, unknown functions of diffusion
equations often denote densities or concentrations of some physical objects or chemical
substances and they are real valued. Thereby, only real parts of unknown functions are
meaningful in applications.

Fortunately, when diffusion equations are well posed, the solutions are always real if
their initial functions are real. This fact means that one can construct desired real solutions
in the framework of complex function spaces. Even more, as seen by [5,6] for example,
one can use the Lojasiewicz — Simon theory in order to prove longtime convergence of real
solutions to stationary solutions. Furthermore, the arguments in [5, 6] suggest that one
could make general methods for studying the longtime convergence problems in a unified
way for various diffusion equations employing the Lojasiewicz — Simon theory. To the ends,
however, we have to begin by constructing firm frameworks.

In the Lojasiewicz — Simon theory, the gradient inequality (see Chill [7] and Haraux,
Jendoubi [8]) for the Fréchet derivatives of real valued Lyapunov functions plays a crucial
role. So, everything must be set in the sense of "real", namely, real Banach spaces,
real sectorial operators, real analytic semigroups, interpolations of real Banach spaces
by the complex methods, and so on. As a matter of fact, these things have already been
used implicitly in the various complex settings. The objectives of this Note are then to
introduce an explicit definition of real sectorial operators acting in the real subspaces and
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to show their basic properties which are reasonably analogous to those of complex sectorial
operators.

When a densely defined, closed linear operator acting in a complex Banach space has its
spectrum contained in a sectorial complex domain and satisfies an optimal decay estimate
of resolvent, the operator is called a sectorial operator (Brezis [9] and Yosida [10]). This
notion has naturally been defined only for complex linear operators. Meanwhile, when an
underlying complex Banach space X admits a conjugation f f and is decomposed into
X = X +4X, where X is a real Banach subspace of X, and when a sectorial operator A
of X maps D(A)NX into X, we call its part A x restricted in X a real sectorial operator
induced from A. It is verified that A x inherits basic properties from A.

1. Complex Banach Spaces with Conjugation

We begin with defining conjugation acting on a complex Banach space. Let X be a
complex Banach space with norm || - [|. Assume that X is equipped with a correspondence
f — f satisfying:

f+9=F+7 for fgeX, (1)
_f:af for a € C, fE)N(, (2)
?:f for fE)Z', (3)

IFI =1fl  for feX. (4)

It is immediate to verify that the correspondence is continuous on X and one-to-one
and onto. In particular, 0 = 0. The vector f is called the conjugate vector of f. Such a
correspondence is called a conjugation on the space X.
For f € X, we put
f+f
2

Then, it is clear that f = Ref +ilmf. The vector Ref (resp. Imf) is called the real part
(resp. imaginary part) of f € X. The vectors satisfying Imf = 0 or equivalently f = f are
called a real vector. By (1), (2) and (3), both Ref and Imf are a real vector. As noticed,

0 is also a real vector. On the other hand, the vectors satisfying Ref = 0 or equivalently

f = —f are called a purely imaginary vector. Obviously, iImf is a purely imaginary vector.
It holds that

‘*ﬁl

Ref = and  Imf = f22 . (5)

Ref +dmf = Ref —imf  for f € X. (6)
We want to consider the space
X=A{f¢€ X: Imf =0,ie., f= ft

By (1) and (2), X is a real vector space equipped with the norm || - ||. We see the following
fact.

Theorem 1. X s a closed subsel of)N( and is a real Banach space.

Proof. By definition, X = Im~'0. Meanwhile, f — Imf is continuous; therefore, X is a
closed subset.
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Since X is a real normed space, it suffices to verify its completeness. But, as X is a
closed subset of a complete space X, X is naturally complete.

(Il
We call X the real Banach subspace induced from X.
Thereby, we have a decomposition of any f € X into the form
f =Ref +ilmf with Ref, Imf € X. (7)

Indeed, such a decomposition is unique.

Theorem 2. For any f € X, [ can be written as f = fi +ifs, fr € X(k=12)ina
unique way. The correspondence f — fy is continuous from X onto X for k = 1,2. In
this sense, X = X +1.X.

Proof. Since (7) gives such a decomposition, it is sufficient to prove the uniqueness. Let
f=fi+ifo=g1+igs with fi, g € X for k = 1,2. Then, (fi — g1) +i(fo — g2) = 0; at
the same time, considering this conjugate, we have (f; — g1) — i(f2 — g2) = 0. Therefore,
fi = g1 and fo = go. Hence, (7) is the only possible decomposition.

By (4), we see that

171 < [Ref[| + [Tmf]| < 2max{|[Re fl. [Tm f} <20/, feX.  (8)

This readily yields that f — Ref and f — Imf are continuous from X onto X.

O
Corollary 1. When X is a complex Hilbert space with inner product (-, ), its real Banach
subspace X is a real Hilbert space with the same inner product.

Proof. Since

Af,9) = Ilf + gl = If = glI* +illf +igll* — il f —igll?,

it follows that

A(f,g) = IIF + 9> = If — gl* =il f + gl + il f —ig]>.

In view of (4), we observe that

(f.9)=(f.9) for f,geX. 9)

If f, g € X, then (f,g) = (f,g). Thus, (-,-) defines a real inner product on X which
provides a Hilbert structure.

O
2. Real Sectorial Operators

We now state a definition of real sectorial operators. Let X bea complex Banach space
with norm || - ||. Assume that X is equipped with a conjugation f — f and let X be its
real Banach subspace.
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Let A:D(A) — X be a linear operator of X with domain D(A) C X. Assume that A
satisfies the conditions:

u € D(A) is equivalent to Reu, Imu € D(A), (10)
Re Au = A(Reu) and Im Au = A(Imu) for u € D(A). (11)
These conditions can be described in terms of conjugate.

Proposition 1. In order that a linear operator A: D(A) — X satisfies (10) and (11), it
is necessary and sufficient that A satisfies:

u € D(A) if and only if e D(A), (12)
Au= Au for u € D(A). (13)
Proof. Let A satisfy (10) and (11). Then, u € D(A) if and only if Rew,Imu € D(A); and
these are obviously equivalent to w € D(A). Moreover, by (6), it holds for u € D(A) that
Au = ReAu + ilmAu = ReAu — ilmAu,
Au = A(Reu — ilmu) = A(Reu) — iA(Imu).
Hence, (11) implies (13).

Conversely, let A satisfy (12) and (13). Then, u € D(A) implies u, w € D(A); then,
(5) shows that Reu, Imu € D(A); hence, (10) is verified. Moreover, under (13),

ReAu = (Au+ Au)/2 = (Au+ Au)/2 = A(Reu),
ImAu = (Au — Au)/2i = (Au — A1) /2i = A(Imu).
Hence, (11) is verified.

L]
We thus observed that (10) and (11) imply that D(A) = [D(A) N X] +i[D(A) N X]

and that A maps D(A) N X into X. In this sense, we call A a real linear operator of X.

In addition, we are naturally led to consider a part of A restricted in the real subspace X
which is defined by

(14)

D(Apx) = D(A) N X,
Axu = Au.

By (11), we then have
Au = Ax(Reu) +iAx(Imu) for u € D(A).

Theorem 3. Let A:D(A) — X be a densely defined, closed linear operator of)z satisfying
(10) and (11). Then, its part Ajx in X is a densely defined, closed real linear operator of
X.

Proof. First, let us prove density of D(A|x) in X. For any f € X, there exists a sequence

u, € D(A) such that u, converges to f in X. Then, Reu,, € D(A|x) and Reu,, = Ref = f

in X and of course in X. Hence, D(A|x) is dense in X.

Second, let us prove closedness of A x. Consider sequences u,, € D(A\X) and f, = Au,
such that, as n — oo, u, — u and f, — f in X. By the closedness of A, u € D(A) and
f = Au. As X is closed in X (due to Theorem 1), v must be in X; thereby, u € D(Ax).
Consequently, f = Au = A|xu.
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~ |

We here remember the definition of sectorial operators of X (see [4]). A densely defined,

closed linear operator A is said to be a sectorial operator of X if its spectrum o(A) is
contained in a sectorial domain

g(A) c X ={)eC; |arg )| < w}, 0<w<m, (15)
and its resolvent satisfies the estimate
M
I0- A< G fr A S (16)

with some constant M > 1. B

When a sectorial operator A of X is a real linear operator, A is called a real sectorial
operator of X. We can show various properties of real sectorial operators by the following
theorems.

Theorem 4. Let A be a real sectorial operator of X. Then,
A€ p(A) if and only if X € p(A); (17)
A=A Ff=X=A)7'F  for xep(A), feX. (18)

In particular, when X\ € p(A) is real, (A — A)~! is a real operator and X\ belongs to the
resolvent set p(Ax) of the part Ajx.

Proof. From (13), the relation (A — A)u = f for u € D(A) and f € X is equivalent to
(A — A)u = f. This then shows that (17) holds true.

As seen, we have (A — A)u = f and (A — A)u = f for A\, X\ € p(A). Thereby, u =
(A—A)"'f and w = (A — A)"'f. Hence, (18) is also shown.

When \ € p(A) is real, (18) means that (A — A)~! satisfies (13). Hence, (A — A)7! is
a real operator.

~ O
Theorem 5. Let A be a real sectorial operator of X. Let, for 0 < 6 < oo, A? be its
fractional powers. Then, for every exponent 0, A% is also a real operator.

Proof. The spectrum condition (15) implicitly means that 0 ¢ o(A). So, there exists § > 0
such that {\ € C; |A\| <6} C p(A). We then introduce an integral contour I = Ul UI"}
such that Iy : A\ = re™ § <r < oo and Iy = e, —w < # < w. Its orientation is from
0oe®! to de¥!, from el to de~*!, and from de~“! to coe . By definition, A~ is given by
the integral
A0F = i/ AN —A)TfdN for fe X,
r

211

Taking the conjugate of each hand side, we obtain by (18) that

A7 — - L [ 39— A Fan

27 r

Here, \=0 = ¢—0(log[X—iargd) — (A\)7%. And, as X varies on I" in the positive sense, A varies
on the same contour " in the negative sense. It therefore follows that

I 1 _ _
A0f — —,/ A0\ — A Fdr = AT,
211 r
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This means that A=Y satisfies (13). Thanks to Proposition 1, A=% is a real operator (note
that, as A=Y is a bounded operator, (12) is automatically satisfied).

It is now easy to see that A? is real. Indeed, if u € D(A?), then there exists f € X for
which © = A% f holds; therefore, @ = A~%f and @ € D(A?); furthermore, A%u = A%%. It
is clear that w € D(A?) conversely implies u = u € D(A?). Hence, Proposition 1 is again
available to A°.

O

Consider a real sectorial operator A of X. As observed by Theorem 3, its part A|x
in X is a densely defined, closed operator acting in X. Then, we can give a definition of
fractional powers for A x. In fact, noting that A? is an operator from D(A%) N X into X,
we set

[Ax]? = [A%)x for any 0 < 0 < oo,

with the domain
D([Ax]") = D(A%) N X. (19)

Then,
Alu = [Ax)"(Rew) + i[Ajx)’(Tmu) — for u € D(A).

s

Theorem 6. Let A be a real sectorial operator of X with angle w < . Then, for the

2
analytic semigroup e 4 (0 < t < o0) generated by —A, e~ is a real operator for any
0<t<oo.

Proof. Let I' be a similar integral contour used in the proof of Theorem 5. As well known,
for 0 < t < oo, the semigroup e~ is given by

e f = 1 / e MN—A)fdN,  feX.
r

21

Taking the conjugate of each hand side, we obtain by the similar arguments as in the proof
of Theorem 5 that

e~tAf = QL /F A ON=A) " fd\ = e

™

This means that e ™! satisfies (13) of Proposition 1 and is a real operator of X.
Consequently, e * is a real bounded operator acting on X.
O

Under the assumptions of Theorem 6, we define a semigroup on X generated by —Ax
by the formula

et = ey for 0 <t < 0.
Then,
e = e AIX(Ref) 4 de X (Imf) for fe X.
Moreover,
et L emi X = oA op X
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3. Interpolation and Real Subspaces

Let Z and X be two complex Banach spaces such that ZCcX densely and continuously.
We assume that X has a conjugation f — f on it. In addition, we assume that this
conjugation is consistent to that of Z in the sense that

we Z ifandonlyif we Z, (20)
[allz = llullz for ue Z. (21)

For 0 < 6 < 1, let [X, Z]s denote the complex interpolation space ( [11]). This space
can also be decomposed into a sum of real part and imaginary part as in Theorem 2.

Theorem 7. Forany 0 <6 <1,

welX,Z)y if and only if ue [X,Z, (22)

Fllix z, = llulliz z, — for ue[X,Zlo. (23)

Proof. Let u € [X,Z]y. By definition, there exists a holomorphic function ®(z) defined
in the band domain G = {z € C; 0 < Rez < 1} with values in X, which is continuous
and bounded on the closed domain G, which takes its values on the straight line ¢ =
{z = 1+iy; —00 <y < oo} in Z with SUP_ o cyeoo ||P(2)[|z < 00, and which takes a
value ®(#) = u at the point z = 6. Then, the function W(z) = ®(Z) also possesses similar
properties but W(0) = 7. This then means that @ also belongs to [X, Z]y. Conversely, if
T € [X, Z]y, then u =T € [X, Z]. Hence, (20) holds true.
We remember that

ulliz 2, = nf{sup [®(iy)||z + sup [[D(1+iy)|lz P(2) is
y€iR 1+iyel

any holomorphic function in G satisfying the properties mentioned above}.

Then, (21) also follows immediately from this definition.

O

This theorem means that, when X has a conjugation f +— f which is consistent with
a conjugation on Z (i.e., (20) and (21)), the conjugation induces a conjugation on any
interpolation space [5(;,2]9, too. We can then apply Theorems 1 and 2 to [)?,Z]g. Let
X=X+iX and Z = Z +iZ be the decompositions for X and Z, respectively, into real
part and imaginary part. We naturally define

(X, Zp=[X,ZlynX  forany 0<6<1. (24)
Then, it holds true that

(X, Z]y=[X,Z)g+i[X.Z]y  forany 0<60<1.
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4. Triplet and Real Subspaces

In this section, we want to consider a triplet of complex spaces Z C X C Z* ( [12]).
Here, Xisa complex Hilbert space, its inner product and norm being denoted by (,-) and
| -], respectively. The space Zisa complex reflexive Banach space, its norm being denoted
by || - ||, such that Z is densely and continuously embedded in X. The third space Z* is
a complex adjoint space of Z with norm || - ||,. There is a scaler product (-,-) between Z
and Z* which is sesquilinear and satisfies

lull = sup [(u, )| for ue Z, (25)
llpll<1

el = sup [(u, )| for v € 27, (26)

(u, f) = (u, f) forueZ, feX. (27)

We assume that a conjugation f — £ is defined on X. Corollary 1 and Theorem 2
yield that X = X + ¢X with a real Hilbert space X. We assume in addition that the
conjugation is consistent with that on Z, i.e., (20) and (21) being satisfied. Let Z be the
real subspace of Z induced by this conjugation. Then, the conjugation can be extended
on the space Z*, too. In fact, due to (9) we have

If1l« = sup [(u, f)| = sup [(u, f)| = sup |(u, [)]

llull <1 flull <1 l[ull<1
= sup [(@, f)| = sup [(u, f) = [Ifll.  for feX,
flull<1 l[all<1
which shows that f — f is continuous in the norm || - ||., too. Density of X in Z* then

provides that the conjugation is extended on Z* continuously. Of course, it holds true that
@l = llelle forall e Z”.

Moreover, from (9) and (27) it is verified that

(u, ) = (u, ) for ue Z, pe Z*. (28)

Let Z* be the real subspace of Z* induced by the conjugation on A Then, (28) shows
that the scaler product is real valued on Z x Z*.

Proposition 2. The two embeddings Z C X C Z* are dense and continuous. Moreover,
(25) and (26) induce

lull = sup  |[(u,@)],  forueZ, (29)
llell«<1, pez*

lells = sup  [(u, )|,  for p € Z" (30)
lul|<1,ueZ

Proof. For f € X, there exists a sequence u,, € Z such that U, — [ in X. Since f— Ref
is continuous, it follows that Rew, € Z and Rew,, — f in X; hence, Z is dense in X.
Similarly, we verify that X is dense in Z*.
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For u € Z, there exists an element ¢ € Z* such that ||¢|, = 1 and |ju/| = (u, ¢). In
view of (28), |lul]| = (u,¢) = (u,P). Therefore, we see that ||u|| = (u, Rep) together with
IRe |« < |l¢ll« < 1. Hence, (29) is proved.

For ¢ € Z*, there exists a sequence u, € Z such that [|u,|| < 1 and (un, @) — ||¢]|s.
It is easy to see that it is the same for the sequence w,. Then, (Reu,, ) — ||¢|/« together
with ||Reu,|| < ||u,|| < 1. Hence, (30) is proved.

O
This proposition has thus proved the following result for Z C X C Z*.

Theorem 8. Let Z, X and Z* be real subspaces introduced above. Then, Z C X C Z*
make a triplet.

We finally remark an important property

1Z*, 7], = X.
2
In fact, it is known ( [4,12]) that
(27, Z], = X. (31)
Then, by (24), we have
(2, 2], = 2" 2, NZ*=XNZ = X.

[T
N

5. Real Sectorial Operators Determined from Sesquilinear Forms
5.1. Real Sesquilinear Forms

Let Z and X be two complex Hilbert spaces with inner products ((-,-)) and (-,-) and

norms || - || and | - |, respectively, such that Z C X densely and continuously. Then, there
is a unique third Banach space Z*, its norm being denoted by || - ||«, which composes a
triplet

ZcXcZ.

The scaler product between Z and Z* is denoted by (-, V5o e

‘We assume that X has a conjugation f — f on it which is consistent with a conjugation
on Z. As seen in Section 4, the conjugation induces a conjugation on Z*. Let Z = Z +
1, X = X +1iX and Z* = Z* + 12" be the decompositions of Z, X and Z*, respectively.
We know by Theorem 8 that these real subspaces also make a triplet

ZcXcz.

Consider a sesquilinear form a(u, v) defined on Z. We assume that a(u,v) is continuous
and coercive on 7, i.e.,

la(u,v)| < M||u||||v]] for u, v € Z, (32)
Rea(u,u) > d|ul? for u € Z, (33)

with some constants M > 0 and ¢ > 0.
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We furthermore assume that
a(u,v) is real valued for wu, v € Z. (34)

Such a sesquilinear form is called a real sesquilinear form. It is possible to characterize the
definition in terms of conjugate.

Proposition 3. a(u,v) satisfies (34) if and only if

a(u,v) = a(u,v) for all u, v e Z. (35)

Proof. Let (34) be satisfied. By sesquiliniarity, we have
a(u,v) = a(Rewu, Rev) +ia(Imu, Rev) —ia(Rew, Imv) + a(Imu, Imv).
Therefore,

a(u,v) = a(Rewu, Rev) —ia(Imu, Rev) +ia(Reu, Imv) + a(Im u, Im v)

= a(Reu —ilmu, Rev —ilmv) = a(w, 7).

Conversely, let (35) be satisfied. If u, v € Z, then v = v, v = v; therefore, a(u,v) =
a(u,v); hence, a(u,v) is real.
O
According to the theory of variational methods ( [12]), the sesquilinear form af(-, )
satisfying (32) and (33) defines a linear operator from Z into Z* by the formula

a(u,v) = (Au,v)z..5  for u,ve Z. (36)

It is also known as a linear operator of Z* that A is a sectorial operator of angle < 7 with
the domain D(A) = Z. In addition, its part in X, denoted by A, is defined by

(37)

D(A) = {u € Z; Aue X},
Au = Au,

and is a sectorial operator of X of angle < 7.
The condition (34) in fact implies the following fact.

Theorem 9. Under (32), (33) and (34), let A and A be sectorial operators of Z* and
X, respectively, introduced above. Then, both A and A are a real operator.

Proof. Tt follows from (36) that

a(u,v) = (Au,v) 5. 5 = (v, Au) 5, 5. for u,ve Z.
Then, it is obtained by (28) and (35) that

a(@,0) = (v, Au) 5, 5. = (T, Au) 5, 5. = (Au, Tz 5  for u,ve Z.
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Meanwhile, by definition,
a(w,v) = (AT, 0) 5., 5 for u, v e Z.

Since v — T is onto Z, we must have Au = A7 for any u € Z. Hence, A fulfills (13).
Similarly, since

a(u,v) = (Au,v) for ue D(A), v e Z,

we have

a(u,v) = (Au,v) for ue D(A), v e Z.
Then, in view of (9), we can repeat the same argument to conclude that A also fulfills
(13).
(Il
We therefore arrive at the following result.

Corollary 2. Under (32), (33) and (34), A and A are a real sectorial operator of A
and X, respectively.

As shown, A is considered as a real linear operator from Z onto Z*, and A as a real
linear operator from D(A)NX onto X. In addition, these operators are nothing more than
the operators Az« and A|x, respectively.

It is known that A satisfies ||(A — A)_1||L();) < 1/|A| for A < 0 and this implies that A
is maximal accretive, i.e., Re(Au,u) > 0 for u € D(A). Then, A possesses bounded purely
imaginary powers A% (—oo < y < 00), and consequently the domains of its fractional
powers A’ coincide with the interpolation spaces, that is,

D(A’) = [X,D(A)]y forany 0<6<1. (38)
Thereby, B
DANYNX =[X,D(A))p N X forany 0 <6 < 1.
In view of (19) and (24), it then follows that

D([Ax]’) = [X, D(A) N X]y = [X, D(Ajx)]s  forany 0 <6< 1.

5.2. Real Elliptic Operators

We conclude this section with presenting an example of real sectorial operator which
is determined from a real sesquilinear form.

Let 2 be a bounded domain in R". Let Ly(Q2;C) (resp. H'(Q;C)) be the complex
Ls-space (resp. the complex Sobolev space of first order) in ©Q with norm || - ||z, (resp.
| - ||z1). We consider a complex triplet

H'(Q;C) C Ly(Q;C) c H'(;C),

where H'(Q; C)* is the adjoint space of H'(2;C). Let f + f be the complex conjugation
on Ly(€2) which obviously satisfies (1)~(4) and is consistent with the conjugation on
H'(Q; C). Thereby, this induces a conjugation on H'(Q;C)*, too.
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According to Theorem 2, the conjugation yields the decomposition of functions in
HY(Q; C), Ly(2;C) and H'(Q;C)* into real part and imaginary part. But, it is nothing
more than

HY(Q;C) = H' (O R) +iH' (4 R),
Ly(Q;C) = Ly(4 R) + i Lo (4 R), (39)
HY(Q;C)* = H' (4 R)* +iH' (Q; R)*,
here Ly(2;R) (resp. H'(Q : R)) is the real Ly-space (resp. the real Sobolev space of first
order) in ©Q and H'(Q;R) is the adjoint space of H'(Q;R). As shown by Theorem 8, we
have a real triplet
HY(Q;R) C Ly(;R) € HY(;R)*.
We then set Z = H'(Q;C) and X = Ly(9Q; C). Consequently, Z = H'(Q;R) and X =

Consider a sesquilinear form

a(u,v) = Z /ajk(:)s)Dju(x) Dyv(x) d:l?—l—/c(a:)u(x)v(@ dx (40)
e Q
defined on Z = H(Q; C). We assume that
ajr € Loo(SR) for 1 < j bk <mn, and c¢ € Loo(;R); (41)

n

Z a;p(2)E€, > 8|E* for almost Vo € Q and V€ = (&,,...,&,) € R"; and (42)
jk=1
c(x) > § for almost Vz € Q, (43)

here § > 0 is some constant.
By (41), the form a(u,v) satisfies (32). In the meantime, since

D agn(@) (& + i) G+ ime) = Y agil@) &€ + myme + i(En; — &),
k=1 k=1

(42) yields that

n

Re | > aj(@)(& +ing) (& +ime) | = S(EF + )

j.k=1
for V&€ +in= (& +in, ..., & +in,) € C".

This together with (43) shows that a(u,v) satisfies (33), too. So, by (36) and (37), we can
define sectorial operators.

Let A be the associated linear operator in H'(Q; C)*. Then, A is a sectorial operator of
H'(Q; C)* with domain D(A) = H'(Q; C) and of angle < Z. For v € C(Q) (C H'($;C)),
(40) is written as

a(u,v) = <— Z Dylai(z)Dju] + c(z)u, v> :
€3 (Q)* X €3 (Q)

jk=1
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Hence, (36) implies in the sense of distribution that

ZDk%k )Dju] + c(x)u in Q.

7,k=1

In Q, A is thus a realization of the elliptic differential operator —> 7, | Dyfajx(2)D;] +
c(x).

Next, let A denote the part of A in Ly(€2; C). Then, A is a sectorial operator of Ly(Q2; C)
of angle < 7. If u € D(A), then, since (40) is written as

a(u,v) = (Au,v) + Z/ ajr(z)v(2)pDju(z) Dyv(z) dx,

where v(x) = (v1(z),...,vs(2z)) is the outer normal vector of 9Q at x € 02, u must
implicitly satisfy the boundary conditions

n

Z ajr(x)vg(x)Dju =0 on Of).

Jk=1

In this sense, A is a realization of —» ", | Di[ajx(2)D;] + c(z) under the Neumann type
boundary conditions Y77, ajr(z)vk(z)Dju = 0 on 9.

It is immediate to verify that (41) yields (34). Hence, Theorem 9 and Corollary 2
are available to the operators A and A to conclude that A is a real sectorial operator of
H'(;C)* and A is a real sectorial operator of Ly(£2;C). Furthermore, in view of (39),
Ajrimr)y- is a densely defined, closed linear operator of H'(Q;R)* having the domain
HY(;R) and Aj, o) is a densely defined, closed linear operator of Ly(€2; R) having the
domain D(A) N Ly(Q;R).

In applications, it is often very important to know the domains of fractional powers
A? or A% for 0 < 6 < 1. Especially, for § = 3, we wonder if D(Az) = Ly(;C) or
if @(A ) = HY(Q;C). Such a problem is called the square root problem, however, the
answer is already known to be no in general (although (31) and (38) are the case). We
have to restrict the class of sesquilinear forms to handle to that of, for example, symmetric
forms. So, in addition to (41) and (42), let us assume that

ajr(r) = ag;(x) for 1 <j, k<n, (44)

which implies that a(u,v) = a(v,u) for u,v € H*(Q;C). Then, A* = A and hence A* = A;
in this way, A is a positive definite self-adjoint operator of Ly(£2; C). Therefore, a(u,u) =
(Au,u) = ||Azul|?, for u € D(A). Furthermore, d|jul|%: < [[Azul3, < M]ju|?, for u €
D(A). Finally, we conclude that D(A2) = H*(Q;C). Due to (38), it is obtained that

D(A?) = [D(A%), D(A2)]ay = [Lo( C), H' (2 C)lag = H*(C)  for 0< 6 <

1
Consequently, taking intersections with Lo(£2;R) for both hand sides, we verify by (19)
and (24) that D([Ayom)’) = H¥(4R)  for 0<0< 1, (45)
where H??(Q;R) is the real Sobolev spaces with the exponent 26.
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Under (44), Az is an isomorphism from H(Q;C) onto Ly(€;C). So, the purely
imaginary powers of A are expressed by A% = AA 2 AYAs A (—0o < y < o0) and
are bounded operators on H'(Q;C)* (since A% € L(Ly(Q;C)) for any —oo < y < 00).
Hence, D(Az) = [D(A°), D(A)]: = Ly(€% C) due to (31). Furthermore, for § <6 <1,

[N

1

D(A”) = [D(A2), D(A)]29-1 = [La(2 C), H' (2 C)Jop—1 = H* (2 C).

Consequently, taking intersections with H'(€2;R)* for both hand sides, we verify by (19)
and (24) that
D([Amoryl’) = H*H(ER)  for $ << 1 (46)

It is equally possible to set Z = H2(Q;C) (instead of H*(Q;C)), where H2(Q;C) is a
completion of the space C(£2; C) by the H!-Sobolev norm. Then, we have a triplet

Hy(Q;C) C Ly(Q;C) € HHQ;C) (= Hy(Q;C)).

The sesquilinear form (40) is considered on H{(Q2; C) under the same assumptions (41),
(42) and (43). Then, the operator A determined by (36) becomes a real sectorial operator
of H™'(€;C) of angle < %, and its part A determined by (37) is a real sectorial operator
of Ly(€%;C) of angle < 7. In the meantime, A is a realization of the elliptic differential
operator — » " Dylaji(x)D;] + () under the Dirichlet boundary conditions u = 0 on
0. In addition, A y-1 (o) is a densely defined, closed real linear operator of H~'(Q; R),
and Ajr,mr) is a densely defined, closed real linear operator of Ly(€2; R).

Furthermore, assume that (44) is satisfied. Then, A* = A and A is a positive definite
self-adjoint operator of Ly(€2; C). The similar arguments as above yield analogous results
to (45) and (46) which characterize the domains D([Ag-1qr)?) or D([AL,@r)]’) of
fractional powers of Ajg-1(qr) or Ajr,r), respectively.

6. Real Sectorial Operators Obtained by Complexfication

This section is devoted to considering how to construct real sectorial operators from
real linear operators. B
Let X be a complex Banach space with norm || - || and with conjugation f — f, and

let X = X +iX be the decomposition into real and imaginary parts. Let a real linear
operator A:D(A) — X be given with domain D(A) C X. By the formula

A(u +iv) = Au+ iAv for u+ive X +iX = X,

we can extend A to a complex linear operator in X with the domain D(A)+iD(A). Indeed,
we verify that

A(u1 + iUl + U + Z"UQ) = A(u1 + UQ) + iA(Ul + ’Ug)
= A(uy + iv1) + A(ug + ivg), uk—i-ivkE)N(, k=1,2,
and

A((a+bi)(u+iv)) = Alau — bv 4+ i(bu + av)) = A(au — bv) + iA(bu + av)
= (a+bi)A(u+iv), a+bieC, u+ivelX.
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Theorem 10. If A is a densely defined, closed linear operator of X, then it is the same
for the extended operator A in X.

Proof. The proof is quite direct if we notice (8).

Consider a densely defined, closed linear operator A: D(A) — X of X. We set i
pr(A) = {(&,n) € R* [(€ — A +n*] : D(A?) — X is one-to-one and onto,
and [(5 — AP+ rﬂ ~!is a bounded operator on X}.
We set also or(A) = R? — pr(A). Assume that
or(A) C ¥ ={(&n) €R% |arg(§,n)| <w},  0<Iw<m, (47)

and that the inverse [(£ — A)? + n?] ! satisfies the estimate

1€ — A)[(€ = A2+ 027 | + [ — A+ 727"l
M

< w for (§,m) ¢ X, (48)

with some constant M > 1.
These conditions are then shown to be sufficient conditions in order that A is a real
sectorial operator.

Theorem 11. If a densely defined, closed real linear operator A of X satisfies (47) and
(48), then A is a real sectorial operator of X.

Proof. For given £ +1in € C and f +ig € X + 11X, consider the equation
[(€ +in) = AJ(u+1iv) = [ +1ig

for u+iv € D(A) +iD(A). This is rewritten in the form

() ()-0)

Therefore, if (£,7) € pr(A), then this equation has a unique solution given by

(1) = (51 et temaren™(5)

i.e., £ +in € p(A). Moreover, we verify that, if the estimate (48) holds true for (£,7) €
pr(A), then the estimate (16) holds for the corresponding & +in. Hence, (48) implies (16).

O
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JENCTBUTEJILHBIE CEKTOPUAJILHEIE OIIEPATOPKI

A.

Heu

CekropuasbHble OMEPATOPbI, KOTOPHIE MEHCTBYIOT B KOMILIEKCHBIX OAHAXOBBIX IMPO-
CTPAHCTBAX W OTODPAXKAKT MEHCTBUTEIbHBIE MOANPOCTPAHCTBA B CeDsi, HA3BIBAIOTCS Ieii-
CTBUTEJIBHBIMU CEKTOPUATbHBIMY OMEPATOPAMH. DTH OIIEPATOPHI Y2Ke HESIBHO UCITOIB3YOTCS
[IpU U3YYEeHUN PA3IuIHbIX quddy3noHHbIX ypaBHernnit. Mexxmy Tem, B Teopun JlosceBuua —
CaiimMoHa, KOTOpas 00ECIeUNBALT CXOAUMOCTh PEIIEHNH K CTAIMOHAPHBIM PEIeHusIM, Ieii-
cTBUTENbHO3HAYHBIE DyHKINN JIATyHOBA UTPAIOT BaXKHYIO pOsb. g Toro 4robsl co31aTh
o0IMe MEeTO/Ibl M3ydeHHsi 3a7ad CXOAMMOCTH Ha ocHoBe Teopuu JlosgceBuua — CaiimoHa,
11e7eco00pa3Ho TaTh SIBHOE ONpeiesieHHe JIefiCTBUTENbHBIX CEKTOPHAJIBHBIX OIEPATOPOB U
MMOKA3aTh WX OCHOBHBIE CBONCTBA, KOTOPHIE HACAEAYIOTCS OT KOMILJIEKCHBIX CEKTOPHABHBIX
OTepaTopOB.

Karoueente caosa: cexmopuanvioie onepamopst; dpobnvie cmenenu onepamopa; duddpe-
PEHUUAADHBLE ONEPATNOPDL.
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