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Sectorial operators that act in complex Banach spaces and map real subspaces into

themselves should be called real sectorial operators. These operators have already been

used implicitly in the study of various di�usion equations. Meanwhile, in the  Lojasiewicz �
Simon theory which provides longtime convergence of solutions to stationary solutions,

the real valued Lyapunov functions play an important role. In order to make general

methods for studying longtime convergence problems on the basis of the  Lojasiewicz �

Simon theory, it may therefore be meaningful to give an explicit de�nition for these real

sectorial operators and to show their basic properties that are inherited from those of

complex sectorial operators.
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Introduction

When we want to study di�usion equations, there is an advantage of handling them
in complex valued function spaces than in real valued function spaces, because the second
order elliptic operators often generate an analytic (holomorphic) semigroup in a suitable
complex Banach space. Using the techniques of functional analysis including such analytic
semigroups, construction of local or global solutions can easily be carried out, see Krein [1],
Tanabe [2], Favini, Yagi [3] and Yagi [4]. In the meantime, unknown functions of di�usion
equations often denote densities or concentrations of some physical objects or chemical
substances and they are real valued. Thereby, only real parts of unknown functions are
meaningful in applications.

Fortunately, when di�usion equations are well posed, the solutions are always real if
their initial functions are real. This fact means that one can construct desired real solutions
in the framework of complex function spaces. Even more, as seen by [5, 6] for example,
one can use the  Lojasiewicz � Simon theory in order to prove longtime convergence of real
solutions to stationary solutions. Furthermore, the arguments in [5, 6] suggest that one
could make general methods for studying the longtime convergence problems in a uni�ed
way for various di�usion equations employing the  Lojasiewicz � Simon theory. To the ends,
however, we have to begin by constructing �rm frameworks.

In the  Lojasiewicz � Simon theory, the gradient inequality (see Chill [7] and Haraux,
Jendoubi [8]) for the Fr�echet derivatives of real valued Lyapunov functions plays a crucial
role. So, everything must be set in the sense of "real", namely, real Banach spaces,
real sectorial operators, real analytic semigroups, interpolations of real Banach spaces
by the complex methods, and so on. As a matter of fact, these things have already been
used implicitly in the various complex settings. The objectives of this Note are then to
introduce an explicit de�nition of real sectorial operators acting in the real subspaces and
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to show their basic properties which are reasonably analogous to those of complex sectorial
operators.

When a densely de�ned, closed linear operator acting in a complex Banach space has its
spectrum contained in a sectorial complex domain and satis�es an optimal decay estimate
of resolvent, the operator is called a sectorial operator (Brezis [9] and Yosida [10]). This
notion has naturally been de�ned only for complex linear operators. Meanwhile, when an
underlying complex Banach space X̃ admits a conjugation f 7→ f and is decomposed into
X̃ = X + iX, where X is a real Banach subspace of X̃, and when a sectorial operator A
of X̃ maps D(A)∩X into X, we call its part A|X restricted in X a real sectorial operator
induced from A. It is veri�ed that A|X inherits basic properties from A.

1. Complex Banach Spaces with Conjugation

We begin with de�ning conjugation acting on a complex Banach space. Let X̃ be a
complex Banach space with norm ∥ · ∥. Assume that X̃ is equipped with a correspondence
f 7→ f satisfying:

f + g = f + g for f, g ∈ X̃, (1)

αf = α f for α ∈ C, f ∈ X̃, (2)

f = f for f ∈ X̃, (3)

∥f∥ = ∥f∥ for f ∈ X̃. (4)

It is immediate to verify that the correspondence is continuous on X̃ and one-to-one
and onto. In particular, 0 = 0. The vector f is called the conjugate vector of f . Such a
correspondence is called a conjugation on the space X̃.

For f ∈ X̃, we put

Ref =
f + f

2
and Imf =

f − f

2i
. (5)

Then, it is clear that f = Ref + iImf . The vector Ref (resp. Imf) is called the real part

(resp. imaginary part) of f ∈ X̃. The vectors satisfying Imf = 0 or equivalently f = f are
called a real vector. By (1), (2) and (3), both Ref and Imf are a real vector. As noticed,
0 is also a real vector. On the other hand, the vectors satisfying Ref = 0 or equivalently
f = −f are called a purely imaginary vector. Obviously, iImf is a purely imaginary vector.
It holds that

Ref + iImf = Ref − iImf for f ∈ X̃. (6)

We want to consider the space

X = {f ∈ X̃; Imf = 0, i.e., f = f}.

By (1) and (2), X is a real vector space equipped with the norm ∥ · ∥. We see the following
fact.

Theorem 1. X is a closed subset of X̃ and is a real Banach space.

Proof. By de�nition, X = Im−10. Meanwhile, f 7→ Imf is continuous; therefore, X is a
closed subset.
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Since X is a real normed space, it su�ces to verify its completeness. But, as X is a
closed subset of a complete space X̃, X is naturally complete.

2

We call X the real Banach subspace induced from X̃.
Thereby, we have a decomposition of any f ∈ X̃ into the form

f = Ref + iImf with Ref, Imf ∈ X. (7)

Indeed, such a decomposition is unique.

Theorem 2. For any f ∈ X̃, f can be written as f = f1 + if2, fk ∈ X (k = 1, 2) in a

unique way. The correspondence f 7→ fk is continuous from X̃ onto X for k = 1, 2. In
this sense, X̃ = X + iX.

Proof. Since (7) gives such a decomposition, it is su�cient to prove the uniqueness. Let
f = f1 + if2 = g1 + ig2 with fk, gk ∈ X for k = 1, 2. Then, (f1 − g1) + i(f2 − g2) = 0; at
the same time, considering this conjugate, we have (f1 − g1) − i(f2 − g2) = 0. Therefore,
f1 = g1 and f2 = g2. Hence, (7) is the only possible decomposition.

By (4), we see that

∥f∥ ≤ ∥Ref∥ + ∥Imf∥ ≤ 2 max{∥Re f∥, ∥Im f∥} ≤ 2∥f∥, f ∈ X̃. (8)

This readily yields that f 7→ Ref and f 7→ Imf are continuous from X̃ onto X.

2

Corollary 1. When X̃ is a complex Hilbert space with inner product (·, ·), its real Banach
subspace X is a real Hilbert space with the same inner product.

Proof. Since

4(f, g) = ∥f + g∥2 − ∥f − g∥2 + i∥f + ig∥2 − i∥f − ig∥2,

it follows that

4(f, g) = ∥f + g∥2 − ∥f − g∥2 − i∥f + ig∥2 + i∥f − ig∥2.

In view of (4), we observe that

(f, g) = (f, g) for f, g ∈ X̃. (9)

If f, g ∈ X, then (f, g) = (f, g). Thus, (·, ·) de�nes a real inner product on X which
provides a Hilbert structure.

2

2. Real Sectorial Operators

We now state a de�nition of real sectorial operators. Let X̃ be a complex Banach space
with norm ∥ · ∥. Assume that X̃ is equipped with a conjugation f 7→ f and let X be its
real Banach subspace.
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Let A :D(A) → X̃ be a linear operator of X̃ with domain D(A) ⊂ X̃. Assume that A
satis�es the conditions:

u ∈ D(A) is equivalent to Reu, Imu ∈ D(A), (10)

ReAu = A(Reu) and ImAu = A(Imu) for u ∈ D(A). (11)

These conditions can be described in terms of conjugate.

Proposition 1. In order that a linear operator A :D(A) → X̃ satis�es (10) and (11), it
is necessary and su�cient that A satis�es:

u ∈ D(A) if and only if u ∈ D(A), (12)

Au = Au for u ∈ D(A). (13)

Proof. Let A satisfy (10) and (11). Then, u ∈ D(A) if and only if Reu, Imu ∈ D(A); and
these are obviously equivalent to u ∈ D(A). Moreover, by (6), it holds for u ∈ D(A) that

Au = ReAu + iImAu = ReAu− iImAu,

Au = A(Reu− iImu) = A(Reu) − iA(Im u).

Hence, (11) implies (13).
Conversely, let A satisfy (12) and (13). Then, u ∈ D(A) implies u, u ∈ D(A); then,

(5) shows that Reu, Imu ∈ D(A); hence, (10) is veri�ed. Moreover, under (13),

ReAu = (Au + Au)/2 = (Au + Au)/2 = A(Reu),

ImAu = (Au− Au)/2i = (Au− Au)/2i = A(Im u).

Hence, (11) is veri�ed.
2

We thus observed that (10) and (11) imply that D(A) = [D(A) ∩ X] + i[D(A) ∩ X]

and that A maps D(A) ∩X into X. In this sense, we call A a real linear operator of X̃.
In addition, we are naturally led to consider a part of A restricted in the real subspace X
which is de�ned by {

D(A|X) = D(A) ∩X,

A|Xu = Au.
(14)

By (11), we then have

Au = A|X(Re u) + iA|X(Im u) for u ∈ D(A).

Theorem 3. Let A :D(A) → X̃ be a densely de�ned, closed linear operator of X̃ satisfying

(10) and (11). Then, its part A|X in X is a densely de�ned, closed real linear operator of

X.

Proof. First, let us prove density of D(A|X) in X. For any f ∈ X, there exists a sequence

un ∈ D(A) such that un converges to f in X̃. Then, Reun ∈ D(A|X) and Reun → Ref = f

in X̃ and of course in X. Hence, D(A|X) is dense in X.
Second, let us prove closedness of A|X . Consider sequences un ∈ D(A|X) and fn = Aun

such that, as n → ∞, un → u and fn → f in X. By the closedness of A, u ∈ D(A) and

f = Au. As X is closed in X̃ (due to Theorem 1), u must be in X; thereby, u ∈ D(A|X).
Consequently, f = Au = A|Xu.
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2
We here remember the de�nition of sectorial operators of X̃ (see [4]). A densely de�ned,

closed linear operator A is said to be a sectorial operator of X̃ if its spectrum σ(A) is
contained in a sectorial domain

σ(A) ⊂ Σ = {λ ∈ C; | arg λ| < ω}, 0 < ω ≤ π, (15)

and its resolvent satis�es the estimate

∥(λ− A)−1∥ ≤ M

|λ|
for λ ̸∈ Σ, (16)

with some constant M ≥ 1.
When a sectorial operator A of X̃ is a real linear operator, A is called a real sectorial

operator of X̃. We can show various properties of real sectorial operators by the following
theorems.

Theorem 4. Let A be a real sectorial operator of X̃. Then,

λ ∈ ρ(A) if and only if λ ∈ ρ(A); (17)

(λ− A)−1f = (λ− A)−1f for λ ∈ ρ(A), f ∈ X̃. (18)

In particular, when λ ∈ ρ(A) is real, (λ − A)−1 is a real operator and λ belongs to the

resolvent set ρ(A|X) of the part A|X .

Proof. From (13), the relation (λ − A)u = f for u ∈ D(A) and f ∈ X̃ is equivalent to
(λ− A)u = f . This then shows that (17) holds true.

As seen, we have (λ − A)u = f and (λ − A)u = f for λ, λ ∈ ρ(A). Thereby, u =
(λ− A)−1f and u = (λ− A)−1f . Hence, (18) is also shown.

When λ ∈ ρ(A) is real, (18) means that (λ − A)−1 satis�es (13). Hence, (λ− A)−1 is
a real operator.

2
Theorem 5. Let A be a real sectorial operator of X̃. Let, for 0 < θ < ∞, Aθ be its

fractional powers. Then, for every exponent θ, Aθ is also a real operator.

Proof. The spectrum condition (15) implicitly means that 0 ̸∈ σ(A). So, there exists δ > 0
such that {λ ∈ C; |λ| ≤ δ} ⊂ ρ(A). We then introduce an integral contour Γ = Γ−∪Γ0∪Γ+

such that Γ± :λ = re±ωi, δ ≤ r < ∞ and Γ0 = δeθi, −ω ≤ θ ≤ ω. Its orientation is from
∞eωi to δeωi, from δeωi to δe−ωi, and from δe−ωi to ∞e−ωi. By de�nition, A−θ is given by
the integral

A−θf =
1

2πi

∫
Γ

λ−θ(λ− A)−1fdλ for f ∈ X̃.

Taking the conjugate of each hand side, we obtain by (18) that

A−θf = − 1

2πi

∫
Γ

λ−θ (λ− A)−1f dλ.

Here, λ−θ = e−θ(log |λ|−i arg λ) = (λ)−θ. And, as λ varies on Γ in the positive sense, λ varies
on the same contour Γ in the negative sense. It therefore follows that

A−θf =
1

2πi

∫
Γ

λ−θ (λ− A)−1f dλ = A−θf.
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This means that A−θ satis�es (13). Thanks to Proposition 1, A−θ is a real operator (note
that, as A−θ is a bounded operator, (12) is automatically satis�ed).

It is now easy to see that Aθ is real. Indeed, if u ∈ D(Aθ), then there exists f ∈ X̃ for
which u = A−θf holds; therefore, u = A−θf and u ∈ D(Aθ); furthermore, Aθu = Aθu. It
is clear that u ∈ D(Aθ) conversely implies u = u ∈ D(Aθ). Hence, Proposition 1 is again
available to Aθ.

2

Consider a real sectorial operator A of X̃. As observed by Theorem 3, its part A|X
in X is a densely de�ned, closed operator acting in X. Then, we can give a de�nition of
fractional powers for A|X . In fact, noting that Aθ is an operator from D(Aθ) ∩X into X,
we set

[A|X ]θ = [Aθ]|X for any 0 < θ < ∞,

with the domain

D([A|X ]θ) = D(Aθ) ∩X. (19)

Then,

Aθu = [A|X ]θ(Re u) + i[A|X ]θ(Imu) for u ∈ D(Aθ).

Theorem 6. Let A be a real sectorial operator of X̃ with angle ω < π
2
. Then, for the

analytic semigroup e−tA (0 ≤ t < ∞) generated by −A, e−tA is a real operator for any

0 < t < ∞.

Proof. Let Γ be a similar integral contour used in the proof of Theorem 5. As well known,
for 0 < t < ∞, the semigroup e−tA is given by

e−tAf =
1

2πi

∫
Γ

e−tλ(λ− A)−1fdλ, f ∈ X̃.

Taking the conjugate of each hand side, we obtain by the similar arguments as in the proof
of Theorem 5 that

e−tAf =
1

2πi

∫
Γ

λ−θ (λ− A)−1f dλ = e−tAf.

This means that e−tA satis�es (13) of Proposition 1 and is a real operator of X̃.
Consequently, e−tA is a real bounded operator acting on X.

2

Under the assumptions of Theorem 6, we de�ne a semigroup on X generated by −A|X
by the formula

e−tA|X = [e−tA]|X for 0 < t < ∞.

Then,

e−tAf = e−tA|X (Ref) + ie−tA|X (Imf) for f ∈ X̃.

Moreover,

e−tA|X · e−sA|X = e−(t+s)A|X on X.
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3. Interpolation and Real Subspaces

Let Z̃ and X̃ be two complex Banach spaces such that Z̃ ⊂ X̃ densely and continuously.
We assume that X̃ has a conjugation f 7→ f on it. In addition, we assume that this
conjugation is consistent to that of Z̃ in the sense that

u ∈ Z̃ if and only if u ∈ Z̃, (20)

∥u∥Z̃ = ∥u∥Z̃ for u ∈ Z̃. (21)

For 0 ≤ θ ≤ 1, let [X̃, Z̃]θ denote the complex interpolation space ( [11]). This space
can also be decomposed into a sum of real part and imaginary part as in Theorem 2.

Theorem 7. For any 0 ≤ θ ≤ 1,

u ∈ [X̃, Z̃]θ if and only if u ∈ [X̃, Z̃]θ, (22)

∥u∥[X̃,Z̃]θ
= ∥u∥[X̃,Z̃]θ

for u ∈ [X̃, Z̃]θ. (23)

Proof. Let u ∈ [X̃, Z̃]θ. By de�nition, there exists a holomorphic function Φ(z) de�ned

in the band domain G = {z ∈ C; 0 < Re z < 1} with values in X̃, which is continuous
and bounded on the closed domain G, which takes its values on the straight line ℓ =
{z = 1 + iy; −∞ < y < ∞} in Z̃ with sup−∞<y<∞ ∥Φ(z)∥Z < ∞, and which takes a

value Φ(θ) = u at the point z = θ. Then, the function Ψ(z) = Φ(z) also possesses similar

properties but Ψ(θ) = u. This then means that u also belongs to [X̃, Z̃]θ. Conversely, if

u ∈ [X̃, Z̃]θ, then u = u ∈ [X̃, Z̃]θ. Hence, (20) holds true.
We remember that

∥u∥[X̃,Z̃]θ
= inf{ sup

iy∈iR
∥Φ(iy)∥X̃ + sup

1+iy∈ℓ
∥Φ(1 + iy)∥Z̃ ; Φ(z) is

any holomorphic function in G satisfying the properties mentioned above}.

Then, (21) also follows immediately from this de�nition.

2

This theorem means that, when X̃ has a conjugation f 7→ f which is consistent with
a conjugation on Z̃ (i.e., (20) and (21)), the conjugation induces a conjugation on any

interpolation space [X̃, Z̃]θ, too. We can then apply Theorems 1 and 2 to [X̃, Z̃]θ. Let

X̃ = X + iX and Z̃ = Z + iZ be the decompositions for X̃ and Z̃, respectively, into real
part and imaginary part. We naturally de�ne

[X,Z]θ = [X̃, Z̃]θ ∩X for any 0 ≤ θ ≤ 1. (24)

Then, it holds true that

[X̃, Z̃]θ = [X,Z]θ + i[X,Z]θ for any 0 ≤ θ ≤ 1.
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4. Triplet and Real Subspaces

In this section, we want to consider a triplet of complex spaces Z̃ ⊂ X̃ ⊂ Z̃∗ ( [12]).

Here, X̃ is a complex Hilbert space, its inner product and norm being denoted by (·, ·) and
| · |, respectively. The space Z̃ is a complex re�exive Banach space, its norm being denoted

by ∥ · ∥, such that Z̃ is densely and continuously embedded in X̃. The third space Z̃∗ is

a complex adjoint space of Z̃ with norm ∥ · ∥∗. There is a scaler product ⟨·, ·⟩ between Z̃

and Z̃∗ which is sesquilinear and satis�es

∥u∥ = sup
∥φ∥∗≤1

|⟨u, φ⟩| for u ∈ Z̃, (25)

∥φ∥∗ = sup
∥u∥≤1

|⟨u, φ⟩| for φ ∈ Z̃∗, (26)

⟨u, f⟩ = (u, f) for u ∈ Z̃, f ∈ X̃. (27)

We assume that a conjugation f 7→ f is de�ned on X̃. Corollary 1 and Theorem 2
yield that X̃ = X + iX with a real Hilbert space X. We assume in addition that the
conjugation is consistent with that on Z̃, i.e., (20) and (21) being satis�ed. Let Z be the

real subspace of Z̃ induced by this conjugation. Then, the conjugation can be extended
on the space Z̃∗, too. In fact, due to (9) we have

∥f∥∗ = sup
∥u∥≤1

|⟨u, f⟩| = sup
∥u∥≤1

|(u, f)| = sup
∥u∥≤1

|(u, f)|

= sup
∥u∥≤1

|(u, f)| = sup
∥u∥≤1

|⟨u, f⟩ = ∥f∥∗ for f ∈ X̃,

which shows that f 7→ f is continuous in the norm ∥ · ∥∗, too. Density of X̃ in Z̃∗ then

provides that the conjugation is extended on Z̃∗ continuously. Of course, it holds true that

∥φ∥∗ = ∥φ∥∗ for all φ ∈ Z̃∗.

Moreover, from (9) and (27) it is veri�ed that

⟨u, φ⟩ = ⟨u, φ⟩ for u ∈ Z̃, φ ∈ Z̃∗. (28)

Let Z∗ be the real subspace of Z̃∗ induced by the conjugation on Z̃∗. Then, (28) shows
that the scaler product is real valued on Z × Z∗.

Proposition 2. The two embeddings Z ⊂ X ⊂ Z∗ are dense and continuous. Moreover,

(25) and (26) induce

∥u∥ = sup
∥φ∥∗≤1, φ∈Z∗

|⟨u, φ⟩|, for u ∈ Z, (29)

∥φ∥∗ = sup
∥u∥≤1, u∈Z

|⟨u, φ⟩|, for φ ∈ Z∗. (30)

Proof. For f ∈ X, there exists a sequence un ∈ Z̃ such that un → f in X̃. Since f 7→ Ref
is continuous, it follows that Reun ∈ Z and Reun → f in X; hence, Z is dense in X.
Similarly, we verify that X is dense in Z∗.
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For u ∈ Z, there exists an element φ ∈ Z̃∗ such that ∥φ∥∗ = 1 and ∥u∥ = ⟨u, φ⟩. In
view of (28), ∥u∥ = ⟨u, φ⟩ = ⟨u, φ⟩. Therefore, we see that ∥u∥ = ⟨u,Reφ⟩ together with
∥Reφ∥∗ ≤ ∥φ∥∗ ≤ 1. Hence, (29) is proved.

For φ ∈ Z∗, there exists a sequence un ∈ Z̃ such that ∥un∥ ≤ 1 and ⟨un, φ⟩ → ∥φ∥∗.
It is easy to see that it is the same for the sequence un. Then, ⟨Reun, φ⟩ → ∥φ∥∗ together
with ∥Reun∥ ≤ ∥un∥ ≤ 1. Hence, (30) is proved.

2

This proposition has thus proved the following result for Z ⊂ X ⊂ Z∗.

Theorem 8. Let Z, X and Z∗ be real subspaces introduced above. Then, Z ⊂ X ⊂ Z∗

make a triplet.

We �nally remark an important property

[Z∗, Z] 1
2

= X.

In fact, it is known ( [4, 12]) that

[Z̃∗, Z̃] 1
2

= X̃. (31)

Then, by (24), we have

[Z∗, Z] 1
2

= [Z̃∗, Z̃] 1
2
∩ Z∗ = X̃ ∩ Z∗ = X.

5. Real Sectorial Operators Determined from Sesquilinear Forms

5.1. Real Sesquilinear Forms

Let Z̃ and X̃ be two complex Hilbert spaces with inner products ((·, ·)) and (·, ·) and
norms ∥ · ∥ and | · |, respectively, such that Z̃ ⊂ X̃ densely and continuously. Then, there

is a unique third Banach space Z̃∗, its norm being denoted by ∥ · ∥∗, which composes a
triplet

Z̃ ⊂ X̃ ⊂ Z̃∗.

The scaler product between Z̃ and Z̃∗ is denoted by ⟨·, ·⟩Z̃×Z̃∗ .

We assume that X̃ has a conjugation f 7→ f on it which is consistent with a conjugation
on Z̃. As seen in Section 4, the conjugation induces a conjugation on Z̃∗. Let Z̃ = Z +
iZ, X̃ = X + iX and Z̃∗ = Z∗ + iZ∗ be the decompositions of Z̃, X̃ and Z̃∗, respectively.
We know by Theorem 8 that these real subspaces also make a triplet

Z ⊂ X ⊂ Z∗.

Consider a sesquilinear form a(u, v) de�ned on Z̃. We assume that a(u, v) is continuous

and coercive on Z̃, i.e.,

|a(u, v)| ≤ M∥u∥∥v∥ for u, v ∈ Z̃, (32)

Re a(u, u) ≥ δ∥u∥2 for u ∈ Z̃, (33)

with some constants M > 0 and δ > 0.
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We furthermore assume that

a(u, v) is real valued for u, v ∈ Z. (34)

Such a sesquilinear form is called a real sesquilinear form. It is possible to characterize the
de�nition in terms of conjugate.

Proposition 3. a(u, v) satis�es (34) if and only if

a(u, v) = a(u, v) for all u, v ∈ Z̃. (35)

Proof. Let (34) be satis�ed. By sesquiliniarity, we have

a(u, v) = a(Reu,Re v) + ia(Im u,Re v) − ia(Re u, Im v) + a(Imu, Im v).

Therefore,

a(u, v) = a(Re u,Re v) − ia(Im u,Re v) + ia(Reu, Im v) + a(Im u, Im v)

= a(Re u− iImu,Re v − iIm v) = a(u, v).

Conversely, let (35) be satis�ed. If u, v ∈ Z, then u = v, v = v; therefore, a(u, v) =
a(u, v); hence, a(u, v) is real.

2

According to the theory of variational methods ( [12]), the sesquilinear form a(·, ·)
satisfying (32) and (33) de�nes a linear operator from Z̃ into Z̃∗ by the formula

a(u, v) = ⟨Au, v⟩Z̃∗×Z̃ for u, v ∈ Z̃. (36)

It is also known as a linear operator of Z̃∗ that A is a sectorial operator of angle < π
2
with

the domain D(A) = Z̃. In addition, its part in X̃, denoted by A, is de�ned by{
D(A) = {u ∈ Z̃; Au ∈ X̃},
Au = Au,

(37)

and is a sectorial operator of X̃ of angle < π
2
.

The condition (34) in fact implies the following fact.

Theorem 9. Under (32), (33) and (34), let A and A be sectorial operators of Z̃∗ and

X̃, respectively, introduced above. Then, both A and A are a real operator.

Proof. It follows from (36) that

a(u, v) = ⟨Au, v⟩Z̃∗×Z̃ = ⟨v,Au⟩Z̃×Z̃∗ for u, v ∈ Z̃.

Then, it is obtained by (28) and (35) that

a(u, v) = ⟨v,Au⟩Z̃×Z̃∗ = ⟨v,Au⟩Z̃×Z̃∗ = ⟨Au, v⟩Z̃∗×Z̃ for u, v ∈ Z̃.
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Meanwhile, by de�nition,

a(u, v) = ⟨Au, v⟩Z̃∗×Z̃ for u, v ∈ Z̃.

Since v 7→ v is onto Z̃, we must have Au = Au for any u ∈ Z̃. Hence, A ful�lls (13).
Similarly, since

a(u, v) = (Au, v) for u ∈ D(A), v ∈ Z̃,

we have
a(u, v) = (Au, v) for u ∈ D(A), v ∈ Z̃.

Then, in view of (9), we can repeat the same argument to conclude that A also ful�lls
(13).

2
We therefore arrive at the following result.

Corollary 2. Under (32), (33) and (34), A and A are a real sectorial operator of Z̃∗

and X̃, respectively.

As shown, A is considered as a real linear operator from Z onto Z∗, and A as a real
linear operator from D(A)∩X onto X. In addition, these operators are nothing more than
the operators A|Z∗ and A|X , respectively.

It is known that A satis�es ∥(λ−A)−1∥L(X̃) ≤ 1/|λ| for λ < 0 and this implies that A

is maximal accretive, i.e., Re(Au, u) ≥ 0 for u ∈ D(A). Then, A possesses bounded purely
imaginary powers Aiy (−∞ < y < ∞), and consequently the domains of its fractional
powers Aθ coincide with the interpolation spaces, that is,

D(Aθ) = [X̃,D(A)]θ for any 0 ≤ θ ≤ 1. (38)

Thereby,
D(Aθ) ∩X = [X̃,D(A)]θ ∩X for any 0 ≤ θ ≤ 1.

In view of (19) and (24), it then follows that

D([A|X ]θ) = [X,D(A) ∩X]θ = [X,D(A|X)]θ for any 0 ≤ θ ≤ 1.

5.2. Real Elliptic Operators

We conclude this section with presenting an example of real sectorial operator which
is determined from a real sesquilinear form.

Let Ω be a bounded domain in Rn. Let L2(Ω;C) (resp. H1(Ω;C)) be the complex
L2-space (resp. the complex Sobolev space of �rst order) in Ω with norm ∥ · ∥L2 (resp.
∥ · ∥H1). We consider a complex triplet

H1(Ω;C) ⊂ L2(Ω;C) ⊂ H1(Ω;C)∗,

where H1(Ω;C)∗ is the adjoint space of H1(Ω;C). Let f 7→ f be the complex conjugation
on L2(Ω) which obviously satis�es (1)∼(4) and is consistent with the conjugation on
H1(Ω;C). Thereby, this induces a conjugation on H1(Ω;C)∗, too.
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According to Theorem 2, the conjugation yields the decomposition of functions in
H1(Ω; C), L2(Ω;C) and H1(Ω;C)∗ into real part and imaginary part. But, it is nothing
more than 

H1(Ω;C) = H1(Ω;R) + iH1(Ω;R),

L2(Ω;C) = L2(Ω;R) + iL2(Ω;R),

H1(Ω;C)∗ = H1(Ω;R)∗ + iH1(Ω;R)∗,

(39)

here L2(Ω;R) (resp. H1(Ω : R)) is the real L2-space (resp. the real Sobolev space of �rst
order) in Ω and H1(Ω;R) is the adjoint space of H1(Ω;R). As shown by Theorem 8, we
have a real triplet

H1(Ω;R) ⊂ L2(Ω;R) ⊂ H1(Ω;R)∗.

We then set Z̃ = H1(Ω;C) and X̃ = L2(Ω;C). Consequently, Z = H1(Ω;R) and X =
L2(Ω;R).

Consider a sesquilinear form

a(u, v) =
n∑

j,k=1

∫
Ω

ajk(x)Dju(x)Dkv(x) dx +

∫
Ω

c(x)u(x)v(x) dx (40)

de�ned on Z̃ = H1(Ω;C). We assume that

ajk ∈ L∞(Ω;R) for 1 ≤ j, k ≤ n, and c ∈ L∞(Ω;R); (41)
n∑

j,k=1

ajk(x)ξjξk ≥ δ|ξ|2 for almost ∀x ∈ Ω and ∀ξ = (ξ1, . . . , ξn) ∈ Rn; and (42)

c(x) ≥ δ for almost ∀x ∈ Ω, (43)

here δ > 0 is some constant.
By (41), the form a(u, v) satis�es (32). In the meantime, since

n∑
j,k=1

ajk(x)(ξj + iηj)(ξk + iηk) =
n∑

j,k=1

ajk(x)[ξjξk + ηjηk + i(ξkηj − ξkηj)],

(42) yields that

Re

[
n∑

j,k=1

ajk(x)(ξj + iηj)(ξk + iηk)

]
≥ δ(|ξ|2 + |η|2)

for ∀ξ + iη = (ξ1 + iη1, . . . , ξn + iηn) ∈ Cn.

This together with (43) shows that a(u, v) satis�es (33), too. So, by (36) and (37), we can
de�ne sectorial operators.

Let A be the associated linear operator in H1(Ω;C)∗. Then, A is a sectorial operator of
H1(Ω;C)∗ with domain D(A) = H1(Ω;C) and of angle < π

2
. For v ∈ C∞

0 (Ω) (⊂ H1(Ω;C)),
(40) is written as

a(u, v) =

⟨
−

n∑
j,k=1

Dk[ajk(x)Dju] + c(x)u, v

⟩
C∞
0 (Ω)∗×C∞

0 (Ω)

.
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Hence, (36) implies in the sense of distribution that

Au = −
n∑

j,k=1

Dk[ajk(x)Dju] + c(x)u in Ω.

In Ω, A is thus a realization of the elliptic di�erential operator −
∑n

j,k=1Dk[ajk(x)Dj] +
c(x).

Next, let A denote the part of A in L2(Ω;C). Then, A is a sectorial operator of L2(Ω;C)
of angle < π

2
. If u ∈ D(A), then, since (40) is written as

a(u, v) = (Au, v) +
n∑

j,k=1

∫
∂Ω

ajk(x)ν(x)kDju(x)Dkv(x) dx,

where ν(x) = (ν1(x), . . . , νn(x)) is the outer normal vector of ∂Ω at x ∈ ∂Ω, u must
implicitly satisfy the boundary conditions

n∑
j,k=1

ajk(x)νk(x)Dju = 0 on ∂Ω.

In this sense, A is a realization of −
∑n

j,k=1Dk[ajk(x)Dj] + c(x) under the Neumann type
boundary conditions

∑n
j,k=1 ajk(x)νk(x)Dju = 0 on ∂Ω.

It is immediate to verify that (41) yields (34). Hence, Theorem 9 and Corollary 2
are available to the operators A and A to conclude that A is a real sectorial operator of
H1(Ω;C)∗ and A is a real sectorial operator of L2(Ω;C). Furthermore, in view of (39),
A|H1(Ω;R)∗ is a densely de�ned, closed linear operator of H1(Ω;R)∗ having the domain
H1(Ω;R) and A|L2(Ω;R) is a densely de�ned, closed linear operator of L2(Ω;R) having the
domain D(A) ∩ L2(Ω;R).

In applications, it is often very important to know the domains of fractional powers
Aθ or Aθ for 0 < θ < 1. Especially, for θ = 1

2
, we wonder if D(A

1
2 ) = L2(Ω;C) or

if D(A
1
2 ) = H1(Ω;C). Such a problem is called the square root problem, however, the

answer is already known to be no in general (although (31) and (38) are the case). We
have to restrict the class of sesquilinear forms to handle to that of, for example, symmetric
forms. So, in addition to (41) and (42), let us assume that

ajk(x) = akj(x) for 1 ≤ j, k ≤ n, (44)

which implies that a(u, v) = a(v, u) for u, v ∈ H1(Ω;C). Then, A∗ = A and hence A∗ = A;
in this way, A is a positive de�nite self-adjoint operator of L2(Ω;C). Therefore, a(u, u) =

(Au, u) = ∥A 1
2u∥2L2

for u ∈ D(A). Furthermore, δ∥u∥2H1 ≤ ∥A 1
2u∥2L2

≤ M∥u∥2H1 for u ∈
D(A). Finally, we conclude that D(A

1
2 ) = H1(Ω;C). Due to (38), it is obtained that

D(Aθ) = [D(A0),D(A
1
2 )]2θ = [L2(Ω;C), H1(Ω;C)]2θ = H2θ(Ω;C) for 0 ≤ θ ≤ 1

2
.

Consequently, taking intersections with L2(Ω;R) for both hand sides, we verify by (19)
and (24) that

D([A|L2(Ω;R)]
θ) = H2θ(Ω;R) for 0 ≤ θ ≤ 1

2
, (45)

where H2θ(Ω;R) is the real Sobolev spaces with the exponent 2θ.
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Under (44), A
1
2 is an isomorphism from H1(Ω;C) onto L2(Ω;C). So, the purely

imaginary powers of A are expressed by Aiy = AA− 1
2AiyA

1
2A−1 (−∞ < y < ∞) and

are bounded operators on H1(Ω;C)∗ (since Aiy ∈ L(L2(Ω;C)) for any −∞ < y < ∞).

Hence, D(A
1
2 ) = [D(A0),D(A)] 1

2
= L2(Ω;C) due to (31). Furthermore, for 1

2
≤ θ ≤ 1,

D(Aθ) = [D(A
1
2 ),D(A)]2θ−1 = [L2(Ω;C), H1(Ω;C)]2θ−1 = H2θ−1(Ω;C).

Consequently, taking intersections with H1(Ω;R)∗ for both hand sides, we verify by (19)
and (24) that

D([A|H1(Ω;R)∗ ]θ) = H2θ−1(Ω;R) for 1
2
≤ θ ≤ 1. (46)

It is equally possible to set Z̃ = H1
0 (Ω;C) (instead of H1(Ω;C)), where H1

0 (Ω;C) is a
completion of the space C∞

0 (Ω;C) by the H1-Sobolev norm. Then, we have a triplet

H1
0 (Ω;C) ⊂ L2(Ω;C) ⊂ H−1(Ω;C) (= H1

0 (Ω;C)∗).

The sesquilinear form (40) is considered on H1
0 (Ω;C) under the same assumptions (41),

(42) and (43). Then, the operator A determined by (36) becomes a real sectorial operator
of H−1(Ω;C) of angle < π

2
, and its part A determined by (37) is a real sectorial operator

of L2(Ω;C) of angle < π
2
. In the meantime, A is a realization of the elliptic di�erential

operator −
∑n

j,k=1Dk[ajk(x)Dj] + c(x) under the Dirichlet boundary conditions u = 0 on

∂Ω. In addition, A|H−1(Ω;R) is a densely de�ned, closed real linear operator of H−1(Ω;R),
and A|L2(Ω;R) is a densely de�ned, closed real linear operator of L2(Ω;R).

Furthermore, assume that (44) is satis�ed. Then, A∗ = A and A is a positive de�nite
self-adjoint operator of L2(Ω;C). The similar arguments as above yield analogous results
to (45) and (46) which characterize the domains D([A|H−1(Ω;R)]

θ) or D([A|L2(Ω;R)]
θ) of

fractional powers of A|H−1(Ω;R) or A|L2(Ω;R), respectively.

6. Real Sectorial Operators Obtained by Complex�cation

This section is devoted to considering how to construct real sectorial operators from
real linear operators.

Let X̃ be a complex Banach space with norm ∥ · ∥ and with conjugation f 7→ f , and

let X̃ = X + iX be the decomposition into real and imaginary parts. Let a real linear
operator A :D(A) → X be given with domain D(A) ⊂ X. By the formula

A(u + iv) = Au + iAv for u + iv ∈ X + iX = X̃,

we can extend A to a complex linear operator in X̃ with the domainD(A)+iD(A). Indeed,
we verify that

A(u1 + iv1 + u2 + iv2) = A(u1 + u2) + iA(v1 + v2)

= A(u1 + iv1) + A(u2 + iv2), uk + ivk ∈ X̃, k = 1, 2,

and

A((a + bi)(u + iv)) = A(au− bv + i(bu + av)) = A(au− bv) + iA(bu + av)

= (a + bi)A(u + iv), a + bi ∈ C, u + iv ∈ X̃.
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Theorem 10. If A is a densely de�ned, closed linear operator of X, then it is the same

for the extended operator A in X̃.

Proof. The proof is quite direct if we notice (8).

2

Consider a densely de�ned, closed linear operator A :D(A) → X of X. We set

ρR(A) =
{

(ξ, η) ∈ R2;
[
(ξ − A)2 + η2

]
:D(A2) → X is one-to-one and onto,

and
[
(ξ − A)2 + η2

]−1
is a bounded operator on X

}
.

We set also σR(A) = R2 − ρR(A). Assume that

σR(A) ⊂ Σ = {(ξ, η) ∈ R2; | arg(ξ, η)| < ω}, 0 < ∃ω ≤ π, (47)

and that the inverse
[
(ξ − A)2 + η2

]−1
satis�es the estimate

∥(ξ − A)
[
(ξ − A)2 + η2

]−1∥ + ∥η
[
(ξ − A)2 + η2

]−1∥

≤ M

|ξ| + |η|
for (ξ, η) ̸∈ Σ, (48)

with some constant M ≥ 1.
These conditions are then shown to be su�cient conditions in order that A is a real

sectorial operator.

Theorem 11. If a densely de�ned, closed real linear operator A of X satis�es (47) and

(48), then A is a real sectorial operator of X̃.

Proof. For given ξ + iη ∈ C and f + ig ∈ X + iX, consider the equation

[(ξ + iη) − A](u + iv) = f + ig

for u + iv ∈ D(A) + iD(A). This is rewritten in the form(
ξ − A −η
η ξ − A

)(
u
v

)
=

(
f
g

)
.

Therefore, if (ξ, η) ∈ ρR(A), then this equation has a unique solution given by(
u
v

)
=

(
ξ − A η
−η ξ − A

)[
(ξ − A)2 + η2

]−1
(
f
g

)
,

i.e., ξ + iη ∈ ρ(A). Moreover, we verify that, if the estimate (48) holds true for (ξ, η) ∈
ρR(A), then the estimate (16) holds for the corresponding ξ + iη. Hence, (48) implies (16).

2
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ÄÅÉÑÒÂÈÒÅËÜÍÛÅ ÑÅÊÒÎÐÈÀËÜÍÛÅ ÎÏÅÐÀÒÎÐÛ

À. ßãè

Ñåêòîðèàëüíûå îïåðàòîðû, êîòîðûå äåéñòâóþò â êîìïëåêñíûõ áàíàõîâûõ ïðî-

ñòðàíñòâàõ è îòîáðàæàþò äåéñòâèòåëüíûå ïîäïðîñòðàíñòâà â ñåáÿ, íàçûâàþòñÿ äåé-

ñòâèòåëüíûìè ñåêòîðèàëüíûìè îïåðàòîðàìè. Ýòè îïåðàòîðû óæå íåÿâíî èñïîëüçóþòñÿ

ïðè èçó÷åíèè ðàçëè÷íûõ äèôôóçèîííûõ óðàâíåíèé. Ìåæäó òåì, â òåîðèè Ëîÿñåâè÷à �

Ñàéìîíà, êîòîðàÿ îáåñïå÷èâàåò ñõîäèìîñòü ðåøåíèé ê ñòàöèîíàðíûì ðåøåíèÿì, äåé-

ñòâèòåëüíîçíà÷íûå ôóíêöèè Ëÿïóíîâà èãðàþò âàæíóþ ðîëü. Äëÿ òîãî ÷òîáû ñîçäàòü

îáùèå ìåòîäû èçó÷åíèÿ çàäà÷ ñõîäèìîñòè íà îñíîâå òåîðèè Ëîÿñåâè÷à � Ñàéìîíà,

öåëåñîîáðàçíî äàòü ÿâíîå îïðåäåëåíèå äåéñòâèòåëüíûõ ñåêòîðèàëüíûõ îïåðàòîðîâ è

ïîêàçàòü èõ îñíîâíûå ñâîéñòâà, êîòîðûå íàñëåäóþòñÿ îò êîìïëåêñíûõ ñåêòîðèàëüíûõ

îïåðàòîðîâ.

Êëþ÷åâûå ñëîâà: ñåêòîðèàëüíûå îïåðàòîðû; äðîáíûå ñòåïåíè îïåðàòîðà; äèôôå-

ðåíöèàëüíûå îïåðàòîðû.
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