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Degenerate di�erential equations, as part of the di�erential-algebraic equations, the last

few decades cause increasing interest among researchers, both because of the attractiveness

of the considered theoretical questions, and by virtue of their applications. Currently,

advanced methods developed in this area are used for system modelling and analysis of

electrical and electronic circuits, chemical reaction simulations, optimization theory and

automatic control, and many other areas. In this paper, the theory of normal forms of

di�erential equations, originated in the works of Poincare and recently developed in the

works of Arnold and his school, adapted to the simplest case of a degenerate di�erential

equations. For this purpose we are using technique of Jordan chains, which was widely

used in various problems of bifurcation theory. We study the normal forms of degenerate

di�erential equations in the case of the existence of the maximal Jordan chain. Two and three

dimensional spaces are studied in detail. Normal forms are the simplest representatives of

the degenerate di�erential equations, which are equivalent to more complex ones. Therefore,

normal forms should be considered as a model type of degenerate di�erential equations.
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Introduction

The aim is to develop a technique of construction of normal forms for systems of
di�erential equations with a degenerate operator at the derivative:

Ax′ = F (x, µ), F (0, µ) = 0. (1)

Unless otherwise stated, it is assumed that A, F : E1 → E2, dimE1 = n, dimE2 = n,
(n=2,3 and 4) where A is a degenerate operator such as dimkerA = 1 and kerA = φ,
kerA∗ = ψ. Let function F be su�ciently smooth and B(µ) be the linear part of the
function F calculated at the point x = 0

F (x, µ) = B(µ)x+R(x, µ), ∥R(x, µ)∥ = o(∥x∥).

These results suggest the presence of Jordan chain consisting of n elements for the
operator-function A− εB0(B0 = B(0)) and they are based on the symbiosis of ideas and
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approaches set forth in [1] and [2] for systems of ordinary di�erential equations without
degeneration. Fundamentals of the theory of normal forms can be found in [3] and [4].
The work consists of two parts: the �rst part is algebraic in nature. Here the language
of A-deformation of the operator B0 = B(0) [2] and the apparatus of generalized Jordan
chains (GJC) [1] are used to investigate the perturbations which do not change the Jordan
structure of the operator-function. The second part of the work is presented in [5] and
devoted to normal forms and bifurcations in the case of maximal Jordan chain, which
consists of 2, 3 or 4 elements. In constructing the normal forms for non-autonomous
di�erential equations has been used the apparatus of the di�erential Jordan chains (DJC).
Technically complicated case n = 4 for non-autonomous di�erential equations which use
the DJC and vector spaces over rings of polynomials (modules) is omitted, and published
in the local press [6], and in [7]. It turned out that this type of the system describes aero
elastic model for transonic circulating of gas �ow around plates and envelopes [8].

1. The Normal Form of the Non-Autonomous Degenerate

Di�erential Equations, Depending on Parameters.

Perturbations Which Keep the Jordan Structure of Equation

De�nition 1. The operator-function B(µ) is called an A-deformation of the operator
B0 = B(0) if for small µ the operator-function A− εB(µ) has the same Jordan structure
as the operator-function A− εB0.

Further in this article we consider that the operator-function A−εB0 has the maximal
Jordan chain: φ(1) = φ, φ(2), ..., φ(p), so p = n.

Lemma 1. If the operator-function A− εB0 has the maximal Jordan chain, then B0 is an
invertible operator.

Proof. The elements {φ(k)}p1of the Jordan chain of the operator-function A − εB0 are
de�ned by relations

Aφ(k+1) = B0φ
(k),

⟨
B0φ

(k), ψ(1)
⟩
= 0, k = 1, p− 1;

⟨
B0φ

(p), ψ
⟩
̸= 0. (2)

Because p = n elements of the chain form a basis of E1. If the operator B0 is
not invertible then exists an element u of the space E1 such as B0u = 0. Let
u = ξ1φ

(1)+. . .+ξn−1φ
(n−1) + ξnφ

(n) then ξ1B0φ
(1)+ . . . +ξn−1B0φ

(n−1) + ξnB0φ
(n) = 0.

From the condition
⟨
B0φ

(k), ψ(1)
⟩

= δkn follows that ξn = 0. Then ξ1B0φ
(1)+ . . .

+ξn−1B0φ
(n−1) = A(ξ1φ

(2)+. . .+ξn−1φ
(n)) = 0 and therefore ξ1φ

(2)+. . .+ξn−1φ
(n) = λφ(1)

(because kerA = φ). Since the elements φ(1), ..., φ(n) form the basis of the space, the
ξ1 = 0, . . . , ξn−1 = 0 and u = 0.

2
Corollary 1. If the B(µ) is A-deformation of B0, then the equation (1) can be written as

A(µ)x′ = x+R1(x, µ), (3)

where the matrix of the operator A(µ) = B−1(µ)A has the form [A(µ)] = [C(µ)]J [C(µ)]−1.
Here, the matrix [C(µ)] is formed by the columns of [φ(1), φ(2)(µ), ..., φ(n)(µ)], and J is
Jordan block.
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Proof. Let us apply the matrix [C(µ)]−1[B−1(µ)A][C(µ)] to the vector
ei = (0, . . . , 1, . . . , 0), [C(µ)]−1[B−1(µ)A][C(µ)]ei = [C(µ)]−1[B−1(µ)A]φ(i)(µ) =
[C(µ)]−1φ(i−1)(µ) = ei−1, if i > 1. When i = 1, then [C(µ)]−1[B−1(µ)A][C(µ)]e1 = 0.
Therefore [C(µ)]−1[B−1(µ)A][C(µ)] = J .

2
Lemma 2. Let matrix [C(µ)] be a deformation of E (identical matrix), where the �rst
column has the form [C(µ)]e1 = a(µ)φ, a(µ) ̸= 0, a(0) = 1. Then [C(µ)] de�nes the
operator-function B(µ) � an A-deformation of the operator B0 � up to the zero vector
deformation X(µ), X(0) = 0.

Proof. Indeed, let the matrix [C(µ)] be such that [C(0)] = [φ(1), φ(2), ... , φ(n)]. Then for
su�ciently small µ matrix [C(µ)] is not degenerate, and vectors φ(i)(µ) = [C(µ)]ei form a
basis of the space E1. We de�ne a mapping B(µ) by formulas (using multiplier 1/a(µ)):
B(µ)φ(i)(µ) = Aφ(i+1)(µ) when i < n, and B(µ)φ(n)(µ) = B(0)φ(p) + X(µ). Here X(µ)
be an arbitrary deformation of vector 0. The operator-function A− εB(µ) has a maximal
Jordan chain φ(1), φ(2)(µ), ..., φ(n)(µ). Further, instead of operators we will consider their
matrix in some basis {e1, e2, . . . , en}.

2
De�nition 2. The operator-function B(µ) is called A-versal deformation of the operator
B0 = B(0), if any A-deformation β(ν) of the operator B0, can be obtained from B(µ) by
replacing the parameter, i.e., there exists di�erentiable mapping µ = κ(ν), κ(0) = 0, and
the deformation [S(ν)] of the identical matrix E, such that

[β−1(ν)A] = [S(ν)][B−1(κ(ν))A][S(ν)]−1. (4)

Remark 1. It follows from (4) that the φ(1) is an eigenvector of the matrix [S(ν)]. Indeed,
Aφ(1) = 0⇒ A[S(ν)]−1φ(1) = 0⇒ [S(ν)]−1φ(1) = λφ(1).

Lemma 3. Let W be the subgroup of GL (n,R) of reversible matrix stretching vector
φ(∀S ∈ W : Sφ = λφ, λ ̸= 0) and Eφ subspace gl (n,R) of all matrices for which φ
is an eigenvector. Through γW (B) denote the orbit of matrix B under the action of
W : γW (B) = {SBS−1, S ∈ W}. Then

TB(γW (B)) = Im (LB|Eφ), (5)

where TB(γW (B)) is the tangent space to the orbit γW (B) at the point B and LB|Eφ be
the mapping de�ned by the formula [ν,B]. Here ν ∈ Eφ, LB = [ν,B] is the commutator of
ν and B (Lie bracket).

Proof. If matrix S is close to E (identical) then S belongs to W if and only if S = E + u,
where u ∈ Eφ (u is small enough). Indeed if S ∈ W then (S − E)φ = (λ − 1)φ and
u ∈ Eφ ,conversely if u ∈ Eφ then Sφ = (1+ µ)φ , 1 + µ ̸= 0 because S is invertible. Now
(E + εu)B(E + εu)−1 = (E + εu)B(E − εu+ . . . ) = B + ε[u,B] + . . . , which proves (5).

2
Remark 2. codim (γW (B)) = dim (ZB ∩ Eφ) + codim (Eφ). Here ZB = kerLB is the
centralizer of the matrix B.

Indeed, codim(γW (B)) = dim gl (n,R) − dim(γW (B)) = dim gl (n,R)−
− dim Im (LB|Eφ), but dim Im (LB|Eφ) = dim Eφ − dim ker(LB|Eφ) = dim Eφ−
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− dim (ZB ∩ Eφ). Consequently, codim (γW (B)) = dim gl (n,R) − dim Eφ+
+dim (ZB ∩ Eφ) = dim (ZB ∩ Eφ) + codim (Eφ).

Corollary 2. If V is a manifold which belongs to Eφ, contains zero matrix O and intersects
transversally ZB∩Eφ at the point 0, then LB(T0V ) = TB(γW (B)). Here T0V is the tangent
space to the manifold V at the point 0.

Proof. By the transversality, for each ∀u ∈ Eφ ∃u1 ∈ T0V and u2 ∈ T0(ZB ∩Eφ) such that
u = u1 + u2 ⇒ LB(u) = LB(u1 + u2) = LB(u1) and because of u2 ∈ ZB, Im (LB|T0V ) =
Im (LB|Eφ) = TB(γW (B)).

2
Remark 3. If B = J , then Eφ consists of matrices in which the �rst column has the
form (a, 0, . . . , 0), and thus, dim Eφ = n2 − n + 1. On the other hand, it is known [2],
that ZJ is TJ(γW (J)) span of matrices E, J , J2, . . . , Jn−1, each of which belongs Eφ so
dim TJ(γW (J)) = n2 − 2n+ 1. So V can be selected as subspace matrices

0 0 . . . 0
0 v11 . . . v1n−1

. . . . . . . . . . . .
0 vn−11 . . . vn−1n−1

 . (6)

Then the space TJ(γW (J)) consists of matrices of the form vJ − Jv.

Indeed, by Corollary 2, Im (LJ |T0V ) = Im (LJ |Eφ) = TJ(γW (J)), where V is a
submanifold of Eφ contains zero matrix O and transversal to ZJ ∩ Eφ at zero.

Lemma 4. Let B : Λ → gl (n,R) ∈ C1, where Λ is neighbourhood of zero in Rk, B =
B(λ) , B(0) = B0. We assume that B(λ) transversal to γW (B0) at the point λ = 0 and
k = codim (γW (B0)) and V is a manifold which belongs to Eφ, contains zero matrix O and
intersects transversally ZB∩Eφ at the point 0 and such as dim V = dim γW (B0). Then the
map Φ(v, λ) : V ×Λ→ gl (n,R), de�ned by the formula Φ(v, λ) = (E + v)B(λ)(E + v)−1,
sets the local di�eomorphism of a neighborhood of the point (0, 0) in V × Λ.

Proof. Let us calculate the derivative of Φ(v, λ) with respect to v at the point (0, 0).
It follows from the formula (E + εv)B(λ)(E + εv)−1 = (E + εv)B(λ)(E − εv + . . . ) =
B(λ) + ε[v,B(λ)] + . . . that derivative of Φ(v, λ) at the point (0, 0) is [·, B]. According
to Corollary 2 it maps the tangent space to the manifold V to the tangent space to
γW (B0). The derivative of Φ(v, λ) with respect to λ at the point (0, 0) equals B′(0) � an
arbitrary matrix from the tangent space TB(0) (tangent space to B(λ ) at λ = 0). Due
to the manifold V is transversal to ZB ∩Eφ at the point 0 the derivative of Φ(v, λ) at the
point (0, 0) maps the tangent space to V × Λ to the whole space gl (n,R). But, according
to suppositions k = codim (γW (B0)) and dim V = dim (γW (B0)), so dim V + dim Λ =
dim gl (n,R) and therefore Φ(v, λ) is the local di�eomorphism.

2
Lemma 5. If B = B−1

0 A, and U is subspace of Eφ such that Eφ = (ZB ∩ Eφ)⊕ U , then
the mapping Ψ(u) : U → gl (n,R), de�ned by the formula Ψ(u) = (E + u)B(E + u)−1

de�nes a local di�eomorphism from a neighbourhood of zero in U into the neighbourhood
of B in γW (B).
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Proof. As in lemma 4 derivative of the mapping Ψ(u) is equal to [·, B] and, by virtue of
(5), it maps U to TB(γW (B)). By construction, it has no zeros in U and is therefore an
isomorphism. Then Ψ(u) is a local di�eomorphism.

2
Theorem 1. B(µ) is A-deformation of B0 = B(0) ), if and only if [B−1(µ)A] belongs to
the submanifold γW (B−1

0 A).

Proof. Necessity. By the Corollary 1, the matrix [B−1(µ)A] is represented as
[C(µ)]J [C(µ)]−1 and respectively [B−1(0)A] = [C(0)]J [C(0)]−1, i.e. [B−1(µ)A] =
[C(µ)][C(0)]−1[B−1

0 A][C(0)][C(µ)]−1. In this case [C(µ)][C(0)]−1φ = λ(µ)φ, λ(µ) ̸= 0,
and consequently, [B−1(µ)A] belongs to the submanifold γW (B−1

0 A).
Su�ciency. If [B−1(µ)A] belongs to the submanifold

γW (B−1
0 A), then for any µ [B−1(µ)A] = [C(µ)][B−1

0 A][C(µ)]−1 = [C(µ)][C(0)]−1·
·[B−1(0)A][C(0)][C(µ)]−1 = [S(µ)]J [S(µ)]−1, and by Lemma 2, B(µ) is A-deformation
of B0. Continuity (or di�erentiability if B(µ) is di�erentiable) of C(µ) follows from
Lemma 5. In this case C(µ) has the form E + u(µ), where u(µ) belongs to the subspace
U , selected above.

2
Corollary 3. Let B(µ) be an A-deformation of B0 = B(0). Then B(µ) is a versal
A-deformation.

Proof. Indeed, let ∆(ν) be other A-deformation of B0 = ∆(0) then [∆−1(ν)A] =
[C(ν)][B−1

0 A][C(ν)]−1. Introducing the function κ(ν) = µ, we obtain [∆−1(ν)A] =
[C(ν)][B(κ(ν))−1A][C(ν)]−1, where [B(κ(ν))−1A] = B−1

0 A.

2
Corollary 4. Let B−1

0 A = J , and µ = (µ1, µ2, . . . , µk) be a vector parameter, in order
to B(µ) be a versal A-deformation of B0, it is necessary to all ∂B−1(0)A/∂µi to have
the following form. Let U be arbitrary matrix (6) of size (n − 1)2, and Ǔi be n-column
(u1i, . . . , un−1i, 0), and Ûi be n-column (0, u1i, . . . , un−1i). Then, according to Remark 3,
matrix belonging to TJ(γW (J)) must have the form [0,−Ǔ1, Û1 − Ǔ2, ..., Ûn−2 − Ǔn−1].

Remark 4. This condition is not su�cient.

Indeed, the matrix U =

(
1 1
1 1

)
generates a third-order matrix

 0 1 −1
0 1 0
0 0 1

 which

could not be transformed to the single Jordan cell, because it has two di�erent eigenvalues
0 and 1.

Theorem 2. Let the B−1
0 A = J and Eis be the matrix in which 1 is in place (i, s) and

zeros are at the other places, and s > i+ 1. Then, for small ε the matrix J + εEis belongs
to γW (J) and Eis belongs to the tangent subspace TJ(γW (J)).

Proof. Indeed, in the standard basis matrix J + εEis acts on it as follows: 0← e1 ← e2 ←
· · · ← es−1; es−1 + εei ← es; . . . ; en−1 ← en, in the basis φ1 = e1; . . . ;φs−1 = es−1;φs =
es − εei+1; . . . ;φ2s−i−2 = e2s−i−2 − εes−1;φ2s−i−1 = e2s−i−1 − εes + ε2ei+1; . . . it turns into
the Jordan block.

2
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Remark 5. Any matrix, which has form


0
0
. . .
0
0

1
0
. . .
0
0

∗
1
. . .
0
0

. . .

. . .

. . .

. . .

. . .

∗
∗
. . .
1
0


belongs to γW (J).

Indeed, it has one eigenvalue equal to zero and one eigenvector e1, therefore, it could
be reduced to the Jordan block.

De�nition 3. Let ∆(ν) be A-deformation of B0 = B(0). We call ∆(ν), induced from
B(µ) (B(µ) is A-deformation of B0 = B(0))), with the help of the map µ = κ(ν), if
[∆−1(ν)A] = [B−1(κ(ν))A].

De�nition 4. Let B(µ) be A-deformation of B0 = B(0). We call B(µ) generating if any
other A-deformation of B0 (say ∆(ν)) induced from B(µ) by means of some map µ = κ(ν).

Theorem 3. If the dimension of the tangent space to the orbit of B−1(µ)A at the point
µ = 0 is equal to the dimension of the subspace U (introduced in Lemma 5) then the
deformation B−1

0 A is generating.

Proof. It follows from the Lemma 5 that the dimension of the tangent space to the
orbit of B−1(0)A at the point µ = 0 is equal to dimension of the tangent space to the
orbit γW (B−1

0 A). Therefore the mapping B−1(µ)A de�nes a local di�eomorphism from the
neighbourhood of the point µ = 0 to the neighbourhood B−1

0 A in orbit γW (B−1
0 A). Let Γ

be the inverse map such that for small µ, µ ≡ Γ(B−1(µ)A). Then, if ∆(ν) is an arbitrary
A-deformation of B0 = B(0), we can construct the mapping µ = κ(ν) as µ = Γ(∆−1(ν)A).
Receives [∆−1(ν)A] = [B−1(κ(ν))A].

2
Remark 6. If the perturbation B−1(µ)A of B−1

0 A is known, then it is possible to build
the corresponding perturbation B(µ) of the operator B0 as follows.

Let B−1(µ)A = B−1
0 A + S(µ), or A = B(µ)(B−1

0 A + S(µ)). Since the perturbation
B−1

0 A+S(µ) corresponds to some A-deformation of B0, there is the maximal Jordan chain
φ(1), φ(2)(µ), ..., φ(n)(µ), for which (B−1

0 A+S(µ))φ(1) = 0, φ(i)(µ) = (B−1
0 A+S(µ))φ(i+1)(µ)

(1 < i < n). Therefore, if γ(µ) is the functional, determined by the conditions
⟨φ(1), γ(µ)⟩ = 1, ⟨φ(k)(µ), γ(µ)⟩ = 0, k = 2, . . . , n, then the operator D(µ) = B−1

0 A +
S(µ)+⟨·, γ(µ)⟩φ(n)(µ) is reversible [1]. OperatorD(µ) is called the Schmidt's regularization
for operator B−1(µ)A. Then A = B(µ)[D(µ) − ⟨·, γ(µ)⟩φ(n)(µ)] = B(µ)D(µ) −
⟨·, γ(µ)⟩B(µ)φ(n)(µ), and by Lemma 2 B(µ) = AD−1(µ) + ⟨D−1(µ)·, γ(µ)⟩(B0φ

(n)(0) +
X(µ)).

2. Normal Forms and Bifurcations in the Case of the Maximal

Jordan Chain of Small Length

À. The Jordan Chain of Length Two. Since ∥R(x, µ)∥ = o(∥x∥), in the case of the
maximum Jordan chain of length 2, and also in the non-parametric case, the degenerate
di�erential equation in the basis of φ(1), φ(2)(µ) could be transformed to the system:
x′2 = x1 + f(x1, x2, µ), 0 = x2 + g(x1, x2, µ), using reduction of Lyapunov � Schmidt [1].
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The functions f(x1, x2, µ) and g(x1, x2, µ) satisfy conditions: f(0, 0, µ) ≡ 0, g(0, 0, µ) ≡ 0
è Df(0, 0, µ) ≡ 0, Dg(0, 0, µ) ≡ 0. Using the change of variables y1 = x1 + f(x1, x2, µ),
y2 = x2 this system could be simpli�ed y′2 = y1, y2 = h(y1, y2, µ). If the function h(y1, y2, µ)
is smooth (analytical) and does not dependent on y1, then in a neighbourhood of (0, 0)
y1 = 0, y2 = 0 will be the only solution to this system. In general, by the theorem of
implicit function, y2 = G(y1, µ), G(0, µ) = 0, G′(0, µ) = 0 and therefore the system takes
the form

y′2 = y1, y2 = y21h(y1, µ), |h(y1, µ)| = o(|y1|+ |µ|). (7)

In the simplest case, h(y1, µ) = y1+µ we obtain the normal form of "loss of uniqueness"
bifurcation y′2 = y1, y2 = y21(y1 + µ). When µ = 0, y1(t) ≡ 0, y2(t) ≡ 0 is the only solution
for zero initial value. When µ ̸= 0 this system could be transformed in to di�erential
equation (3y21 + 2µy1)y

′
1 = y1 or if y1 ̸= 0, to (3y1 + 2µ)y′1 = 1. Substitution z = 3y1 + 2µ,

z′ = 3y1 allows to simplify the last equation to the form zz′ = 3, which has a smooth
solution in a neighborhood of t = 0 with initial value z(0) = 2µ. Thus, the uniqueness is
violated.

Theorem 4. In order to system (7) has at the point µ = 0 the bifurcation "loss of
uniqueness" for solution which starts at the point (0, 0) it is necessary, and in case
∂h(0, 0)/∂µ ̸= 0, it is su�cient, that h(0, 0) = 0.

Proof. Necessity. Assume the contrary: h(0, 0) ̸= 0. Then in a neighbourhood of (0, 0)
h(y1, µ) = A+y1h1(y1, µ)+µh2(y1, µ), A ̸= 0. Di�erentiating the equation y2 = y21h1(y1, µ)
with respect to t, followed by replacement of y′2 to y1 leads to an equation in a
neighbourhood of y1 = 0 without degeneracy for small µ:

y′1 = [2A+ 3y1h1(y1, µ) + y21h
′
1(y1, µ) + 2µh2(y1, µ) + µy1h

′
2(y1, µ)]

−1.

Thus, µ = 0 is a bifurcation point, as in any small µ exists two small solutions of (7),
starting from the point (0, 0).

Su�ciency. Let the conditions h(0, 0) = 0, ∂h(0, 0)/∂µ ̸= 0. Then h(y1, µ) =
y1h1(y1, µ) + µh2(y1, µ), where h2(0, 0) ̸= 0, hence y2 = y31h1(y1, µ) + µy21h2(y1, µ), and
y2 = y31h(y1, 0) = y31h(y1) for µ = 0. Therefore, the �rst equation of the system (7) takes
the form: [3y21h(y1) + y31h

′(y1)]y
′
1 = y1. This equation has only one solution with initial

value y1(0) = 0, namely y1(t) ≡ 0. If µ ̸= 0, then y2 = A(µ)y21 + y31h3(y1, µ), A(µ) ̸= 0,
for small y1 and µ. Substituting expression for y2 in the �rst equation of the system (7)
for y1 ̸= 0 gives [2A(µ)y1 + y21h4(y1, µ)]y

′
1 = y1 ⇒ y′1 = [2A(µ)y1 + y21h4(y1, µ)]

−1. This
equation has a nonzero solution with the initial condition y1(0) = 0. Thus, µ = 0 is a
bifurcation point.

2

Â. The Jordan Chain of Length Three. In the case of the Jordan chain of
length three, just like in the case À, the degenerate di�erential equation in the basis
of φ(1), φ(2)(µ), φ(3)(µ) could be transformed to the system:

y′2 = y1, y′3 = y2 + y21f2(y1, y2, µ), y3 = f3(y1, y2, µ). (8)

Function f3 satis�es the following conditions f3(0, 0, µ) ≡ 0 and Df3(0, 0, µ) ≡ 0.
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Consider the particular case of the system (8)

y′2 = y1, y′3 = y2, y3 = µy21 + y22. (9)

Let show that µ = 0 is a bifurcation point "changing of the domain of solution". First
consider the system (9) in a punctured neighbourhood of µ = 0, (µ ̸= 0). This system
takes the form:

y′2 = y1, 2µy1y
′
1 + 2y2y1 = y2, (10)

which is equivalent to the system (when y1 ̸= 0)

y′2 = y21, 2µy′1 = y2 − 2y2y1, (11)

because [9] the solutions of both of these systems have the same orbits (when y1 ̸= 0

and y2 ̸= 0 ) as the solutions of the equation dy2
dy1

=
y21

y2−2y2y1
. The system (11) by the

Existence and Uniqueness theorem has solution started from each point (y01, y
0
2), in some

neighbourhood of (0, 0). To clarify the behavior of solutions in a neighbourhood of y = 0,
µ = 0 we repeat the process of blowing-up of singularity by transition to the new variables
(y1, u) where y2 = uy21. Then y

′
2 = u′ ·y21+u ·2y1(1/2µ)(y2−2y2y1) = u′ ·y21+u ·y1(1/µ)(u ·

y21 − 2u · y31).
By substituting this into (11) we obtain:

u′ = 1− u · (1/µ)(u · y1 − 2u · y21), 2µy′1 = u · y21 − 2u · y31. (12)

After this substitution the singular point (0, 0) "blow up" in the line (0, u). Therefore,
it is necessary to investigate all the singular points of the system (12) on this line. However,
the vector �eld de�ned by the right of (12), has no singular points on this line, because
when y1 = 0 it is equal to (1, 0).To study the solutions of the original system go back to
the variables y1, y2 = u · y21. When µ = 0 system (9) takes the form y′2 = y1 , y

′
3 = y2,

y3 = y22 ⇒ y′2 = y1, 2y1y2 = y2. If y2 ̸= 0 these systems have the solution y1 = 1/2,
y2 = y02 + t/2, y3 = (y02 + t/2)2.

Thus, in the �rst case (µ ̸= 0), the manifold of the initial values of the solutions were
two-dimensional, and in the second case � one-dimensional.

Remark 7. If for degenerate di�erential equation, with the maximal Jordan chain
consisting from three elements, the non-linear part does not depend on the variable y1,
then it has no solutions in some deleted neighbourhood of the point y = 0.

Indeed, the system (8) then takes the form y′2 = y1 , y
′
3 = y2, y3 = f3(y2, µ)⇒ y′2 = y1,

f ′
3(y2, µ)y1 = y2 and since Df3(0, µ) ≡ 0, the second equation of the last system could be
reduced by y2 when y2 ̸= 0 which gives f4(y2, µ)y1 = 1. It is obvious that this equation
could not have small solutions, so y ≡ 0 is the only small solution of the system.

Remark 8. The last result does not take place for the degenerate equation with the
maximal Jordan chain consisting of four elements. This is evident from example:

y′2 = y1, y′3 = y2, y′4 = y3, y4 = y2 · y3 ⇒ y′2 = y1, y′3 = y2, y1 · y3 + y22 = y3.

By substituting the second equation, we get: y′2 = y1, 2y1y2(1−y1)−1+y22(1−y1)−2y′1 = y2.
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If y2 ̸= 0, the system takes form y′2 = y1, y2y
′
1 = (1 − y1)2 − 2y1(1 − y1). The system

has a solution, starting at any point (y01, y
0
2), y

0
2 ̸= 0.

Lemma 6. (A su�cient condition for the occurrence of bifurcation "of the changing of the
domain of solution"). In order to point µ = 0 was a point of bifurcation "changes of the
domain of solutions" for the system (8) in the neighbourhood of y = 0, µ = 0, it is su�cient
that the function f3(y1, y2, µ) has the form f3(y1, y2, µ) = h1(y2, µ) + µh2(y1, y2, µ), where
∂h1(0, µ)/∂y2 = 0, Dh2(0, 0, µ) = 0 and D(∂h2/∂y1)(0, 0, µ) ̸= 0.

Indeed, if the µ = 0, then the system (8) takes the form y′2 = y1, y
′
3 = y2+y

2
1f2(y1, y2, 0),

y3 = h1(y2, 0). After substituting the third equation by the second: y1∂h1(y2, µ)/∂y2 = y2+
y21f2(y1, y2, 0), we can use the implicit function theorem in order to have y2 = F (y1). Thus,
if µ = 0 solution of (8) lies on the curve (y1, F (y1)), then the second equation of the system
(8) can be written as (∂h1/∂y2)y1+µ(∂h2/∂y2)y1+µ(∂h2/∂y1)y

′
1 = y2+y

2
1f2(y1, y2, µ). The

system µ(∂h2/∂y1)y
′
1 = y2 + y21f2(y1, y2, µ) − (∂h1/∂y2)y1 − µ(∂h2/∂y2)y1, y′2 = y1 when

µ ̸= 0 has a solution in a neighbourhood of (0, 0) starting at any point (y01, y
0
2), to which

(∂h2/∂y1)(y
0
1, y

0
2, µ) ̸= 0. Since (∂h2/∂y1)(0, 0, µ) = 0 and D(∂h2/∂y1)(0, 0, µ) ̸= 0, then by

the implicit function theorem, the set of solutions of the equation (∂h2/∂y1)(y
0
1, y

0
2, µ) = 0

is one-dimensional, so there is a bifurcation "of the changing of the domain of solution".
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ÍÎÐÌÀËÜÍÛÅ ÔÎÐÌÛ ÂÛÐÎÆÄÅÍÍÛÕ ÀÂÒÎÍÎÌÍÛÕ
ÄÈÔÔÅÐÅÍÖÈÀËÜÍÛÕ ÓÐÀÂÍÅÍÈÉ
Ñ ÌÀÊÑÈÌÀËÜÍÎÉ ÆÎÐÄÀÍÎÂÎÉ ÖÅÏÎ×ÊÎÉ
È ÏÐÎÑÒÅÉØÈÅ ÏÐÈËÎÆÅÍÈß

Ë.Ð. Êèì-Òÿí1, Á.Â. Ëîãèíîâ2, Þ.Á. Ðóñàê3

1 Íàöèîíàëüíûé èññëåäîâàòåëüñêèé òåõíîëîãè÷åñêèé óíèâåðñèòåò ÌÈÑèÑ,
ã. Ìîñêâà
2 Óëüÿíîâñêèé ãîñóäàðñòâåííûé òåõíè÷åñêèé óíèâåðñèòåò, ã. Óëüÿíîâñê
3 Äåïàðòàìåíò ñîöèàëüíîãî ñåðâèñà, ã. Êàíáåððà, Àâñòðàëèÿ

Âûðîæäåííûå äèôôåðåíöèàëüíûå óðàâíåíèÿ, êàê ÷àñòü àëãåáðî-

äèôôåðåíöèàëüíûõ óðàâíåíèé, ïîñëåäíèå äåñÿòèëåòèÿ âûçûâàþò âñå áîëüøèé

èíòåðåñ ñðåäè èññëåäîâàòåëåé, êàê â ñèëó ïðèâëåêàòåëüíîñòè ðàññìàòðèâàåìûõ òåîðå-

òè÷åñêèõ âîïðîñîâ, òàê è â ñèëó èõ ïðèëîæåíèé. Â íàñòîÿùåå âðåìÿ ðàçâèòûå â äàííîé

îáëàñòè ìåòîäû èñïîëüçóþòñÿ äëÿ ñèñòåìíîãî ìîäåëèðîâàíèÿ è àíàëèçà ýëåêòðè÷å-

ñêèõ è ýëåêòðîííûõ öåïåé, ìîäåëèðîâàíèÿ õèìè÷åñêèõ ðåàêöèé, òåîðèè îïòèìèçàöèè

è àâòîìàòè÷åñêîãî ðåãóëèðîâàíèÿ, à òàêæå âo ìíîãèõ äðóãèõ îáëàñòÿõ. Â íàñòîÿùåé

ðàáîòå òåîðèÿ íîðìàëüíûõ ôîðì äèôôåðåíöèàëüíûõ óðàâíåíèé, áåðóùàÿ ñâîå íà÷àëî

â ðàáîòàõ À. Ïóàíêàðå, à ïîñëåäíåå âðåìÿ ðàçâèâàåìàÿ â ðàáîòàõ Â.È. Àðíîëüäà è

åãî ó÷åíèêîâ, àäàïòèðóåòñÿ ê ïðîñòåéøèì ñëó÷àÿì âûðîæäåííûõ äèôôåðåíöèàëüíûõ

óðàâíåíèé. Äëÿ ýòîãî ñóùåñòâåííî èñïîëüçóåòñÿ òåõíèêà æîðäàíîâûõ öåïî÷åê,

äàâíî è øèðîêî èñïîëüçóåìàÿ â ðàçëè÷íûõ çàäà÷àõ òåîðèè áèôóðêàöèè. Èçó÷àþòñÿ

íîðìàëüíûå ôîðìû âûðîæäåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé â ñëó÷àå ñóùåñòâî-

âàíèÿ ìàêñèìàëüíîé æîðäàíîâîé öåïî÷êè. Ïîäðîáíî èçó÷àþòñÿ ñëó÷àè ðàçìåðíîñòåé

2 è 3. Íîðìàëüíûå ôîðìû ÿâëÿþòñÿ åäèíñòâåííî âîçìîæíûìè ïðåäñòàâèòåëÿìè

âûðîæäåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé, ñâîäÿùèõñÿ ê ñâîåé íîðìàëüíîé ôîðìå.

Ïîýòîìó íîðìàëüíûå ôîðìû ñëåäóåò ñ÷èòàòü ìîäåëüíûìè.

Êëþ÷åâûå ñëîâà: âûðîæäåííûå äèôôåðåíöèàëüíûå óðàâíåíèÿ; íîðìàëüíûå ôîð-

ìû; æîðäàíîâû öåïî÷êè.
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