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Degenerate differential equations, as part of the differential-algebraic equations, the last
few decades cause increasing interest among researchers, both because of the attractiveness
of the considered theoretical questions, and by virtue of their applications. Currently,
advanced methods developed in this area are used for system modelling and analysis of
electrical and electronic circuits, chemical reaction simulations, optimization theory and
automatic control, and many other areas. In this paper, the theory of normal forms of
differential equations, originated in the works of Poincare and recently developed in the
works of Arnold and his school, adapted to the simplest case of a degenerate differential
equations. For this purpose we are using technique of Jordan chains, which was widely
used in various problems of bifurcation theory. We study the normal forms of degenerate
differential equations in the case of the existence of the maximal Jordan chain. Two and three
dimensional spaces are studied in detail. Normal forms are the simplest representatives of
the degenerate differential equations, which are equivalent to more complex ones. Therefore,
normal forms should be considered as a model type of degenerate differential equations.
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Introduction

The aim is to develop a technique of construction of normal forms for systems of
differential equations with a degenerate operator at the derivative:

Ax' = F(z,pn), F(0,un)=0. (1)

Unless otherwise stated, it is assumed that A, F': Fy — FEs, dim £} = n, dim Ey = n,
(n=2,3 and 4) where A is a degenerate operator such as dimker A = 1 and ker A = ¢,
ker A* = 1. Let function F' be sufficiently smooth and B(u) be the linear part of the
function F' calculated at the point x =0

F(z, p) = B(p)z + R(x, p),  [|R(z, p)l| = ol[l]]).

These results suggest the presence of Jordan chain consisting of n elements for the
operator-function A — eBy(By = B(0)) and they are based on the symbiosis of ideas and
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approaches set forth in [1] and [2] for systems of ordinary differential equations without
degeneration. Fundamentals of the theory of normal forms can be found in [3| and [4].
The work consists of two parts: the first part is algebraic in nature. Here the language
of A-deformation of the operator By = B(0) 2] and the apparatus of generalized Jordan
chains (GJC) [1] are used to investigate the perturbations which do not change the Jordan
structure of the operator-function. The second part of the work is presented in [5] and
devoted to normal forms and bifurcations in the case of maximal Jordan chain, which
consists of 2, 3 or 4 elements. In constructing the normal forms for non-autonomous
differential equations has been used the apparatus of the differential Jordan chains (DJC).
Technically complicated case n = 4 for non-autonomous differential equations which use
the DJC and vector spaces over rings of polynomials (modules) is omitted, and published
in the local press [6], and in [7]. It turned out that this type of the system describes aero
elastic model for transonic circulating of gas flow around plates and envelopes |[8§].

1. The Normal Form of the Non-Autonomous Degenerate
Differential Equations, Depending on Parameters.
Perturbations Which Keep the Jordan Structure of Equation

Definition 1. The operator-function B(u) is called an A-deformation of the operator
By = B(0) if for small p the operator-function A — eB(u) has the same Jordan structure
as the operator-function A — eBy.

Further in this article we consider that the operator-function A —eBy has the maximal
Jordan chain: o) =, ) . ©®) 50 p=n.

Lemma 1. If the operator-function A —eBy has the maximal Jordan chain, then By is an
wnvertible operator.

Proof. The elements {p®™} of the Jordan chain of the operator-function A — B, are
defined by relations

A = Bog®, (B 90) =0, k=TP=T; (B, v)£0. ()

Because p = n elements of the chain form a basis of FE;. If the operator By is
not invertible then exists an element u of the space E; such as Bou = 0. Let
u =&t &Y +§ @™ then & BopW+ ... +& 1B + &, BOSO () = 0.
From the condition <ng0 (1)> = O follows that &, = 0. Then & Byp

+€n_1Bop™ Y = A€, +...+§ _19™) = 0 and therefore &, +. . 4+&, 1™ = A(p(l)

(because ker A = ). Since the elements ¢, ..., ©™ form the basis of the space, the
51:0, RO §n_1:()andu:0.
O

Corollary 1. If the B(u) is A-deformation of By, then the equation (1) can be written as

A(p)a’ =z + Ri(z, 1), (3)
where the matriz of the operator A(u) = B~ (u)A has the form [A(u)] = [C(u)]J[C(u)] 7 .
Here, the matriz [C(u)] is formed by the columns of [0, o (1), ..., ™ ()], and J is
Jordan block.
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Proof. Let wus apply the matrix [C(u)] (B~ (un)A][C(u)] to the vector
e = (0,...,1,...,0), [C(] B WAC(w]e; = [Clu ) '[B

5 e e e T s e = o
Therefore[ (W] B AC ()] = J.

Lemma 2. Let matriz [C(p)] be a deformation of E (identical matriz), where the first
column has the form [C(u)ler = a(u)p, a(p) # 0, a(0) = 1. Then [C(u)| defines the

operator-function B(p) — an A-deformation of the operator By — up to the zero wvector

deformation X (u), X(0) = 0.

Proof. Indeed, let the matrix [C'(u)] be such that [C(0)] = [¢™M, P, ..., »™]. Then for
sufficiently small ¢ matrix [C'(u)] is not degenerate, and vectors @ () = [C(u)]e; form a
basis of the space E;. We define a mapping B(u) by formulas (using multiplier 1/a(u)):
B(p)e™ (1) = Ap(u) when i < n, and B(u)e" (1) = B(0)p™ + X (). Here X (u)
be an arbitrary deformation of vector 0. The operator-function A —cB(p) has a maximal
Jordan chain o™, 0@ (p), ..., 0™ (u). Further, instead of operators we will consider their
matrix in some basis {e1, es,...,€e,}.

(I
Definition 2. The operator-function B(u) is called A-versal deformation of the operator
By = B(0), if any A-deformation S(v) of the operator By, can be obtained from B(u) by
replacing the parameter, i.e., there exists differentiable mapping 1 = k(v), k(0) = 0, and
the deformation [S(v)] of the identical matriz E, such that

(B~ () A] = [SW)[B~ (k(v)) AlIS ()] . (4)

Remark 1. It follows from (4) that the ¢V is an eigenvector of the matrix [S(v)]. Indeed,
ApD =0 = AW o) =0 = [S()] 140 = xph

Lemma 3. Let W be the subgroup of GL (n, R) of reversible matriz stretching vector
(VS € W : Sp = Ap, A # 0) and E, subspace gl(n, R) of all matrices for which ¢
is an eigenvector. Through ~yw(B) denote the orbit of matric B wunder the action of
W :yw(B) ={SBS™',S € W}. Then

Ts(yw(B)) = Im (Lp|E,), (5)

where Tp(yw(B)) is the tangent space to the orbit yw(B) at the point B and Lg|E, be
the mapping defined by the formula [v, B]. Here v € E,, Lp = [v, B] is the commutator of
v and B (Lie bracket).

Proof. Tf matrix S is close to E (identical) then S belongs to W if and only if S = E + u,
where u € E, (u is small enough). Indeed if S € W then (S — E)p = (A — 1)¢ and
u € E, conversely if u € E, then S = (1+ pu)p , 1+ 4 # 0 because S is invertible. Now
(E+ecu)B(E+¢eu)™ =(F+ecu)B(E—¢cu+...)=B+¢lu,B]+ ..., which proves (5).

O
Remark 2. codim (yw(B)) = dim (Zp N E,) + codim (E,,). Here Zp = ker Lp is the

centralizer of the matrix B.

Indeed, codim(yw(B)) = dimgl(n,R) — dim(yw(B)) = dimgl(n,R)—
—dim Im (Lg|E,), but dim Im(Lp|E,) = dim E, — dim ker(Lg|E,) = dim E,—
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—dim(Zg N E,). Consequently, codim(yw(B)) = dimgl(n,R) — dim E,+
+dim (Zg N E,) = dim (Zg N E,) + codim (E,,).

Corollary 2. If V is a manifold which belongs to E,, contains zero matriz O and intersects
transversally ZpNE, at the point 0, then L(ToV) = Tr(yw(B)). Here ToV is the tangent
space to the manifold V' at the point 0.

Proof. By the transversality, for each Vu € E, Ju; € T)V and uy € Ty(Zp N E,) such that
u=u; +uy = Lp(u) = Lp(u; +ug) = Lp(uy) and because of us € Zp, Im (Lp|T)V) =
Im (Lp|E,) = Ts(yw(B)).

O
Remark 3. If B = J, then E, consists of matrices in which the first column has the
form (a,0,...,0), and thus, dim E, = n®> —n + 1. On the other hand, it is known [2],
that Z; is Ty(yw(J)) span of matrices E, J, J? ... , J""! each of which belongs E, so
dim T (yw(J)) = n? —2n+ 1. So V can be selected as subspace matrices

0 0 e 0
0 V11 . Vin—1 (6)
0 Un—11 -+ Un—1n-1

Then the space T;(yw(J)) consists of matrices of the form vJ — Jo.

Indeed, by Corollary 2, Im (L;|ToV) = Im(L;|E,) = T;(yw(J)), where V is a
submanifold of E, contains zero matrix O and transversal to Z; N E,, at zero.

Lemma 4. Let B : A — gl(n, R) € C', where A is neighbourhood of zero in R¥, B =
B()\) , B(0) = By. We assume that B(\) transversal to yw(Byg) at the point A = 0 and
k = codim (yw (By)) and V is a manifold which belongs to E,, contains zero matriz O and
intersects transversally ZgNE, at the point 0 and such as dim V = dim vy (By). Then the
map (v, N) : V x A — gl (n, R), defined by the formula ®(v,\) = (E +v)B\)(E +v)7!,
sets the local diffeomorphism of a neighborhood of the point (0,0) in V x A.

Proof. Let us calculate the derivative of ®(v,\) with respect to v at the point (0,0).
It follows from the formula (E + ev)B(A\)(E + ev)™ = (E +ev)BA\)(F —ev+...) =
B(X) + e[v, B(A)] + ... that derivative of ®(v, A) at the point (0,0) is [, B]. According
to Corollary 2 it maps the tangent space to the manifold V' to the tangent space to
yw(By). The derivative of ®(v, \) with respect to A at the point (0,0) equals B’(0) — an
arbitrary matrix from the tangent space TB(0) (tangent space to B(A ) at A = 0). Due
to the manifold V' is transversal to Zp N E,, at the point 0 the derivative of ®(v, \) at the
point (0,0) maps the tangent space to V' x A to the whole space gl (n, R). But, according
to suppositions k& = codim (yw(Byp)) and dim V' = dim (yw (By)), so dim V + dim A =
dim gl (n, R) and therefore ®(v, \) is the local diffeomorphism.

O
Lemma 5. If B = By'A, and U is subspace of E, such that E, = (Zg N E,) ® U, then
the mapping V(u) : U — gl(n, R), defined by the formula ¥(u) = (E + u)B(E + u)™!
defines a local diffeomorphism from a neighbourhood of zero in U into the neighbourhood
of B in yw(B).
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Proof. As in lemma 4 derivative of the mapping ¥ (u) is equal to |-, B] and, by virtue of
(5), it maps U to Ts(yw(B)). By construction, it has no zeros in U and is therefore an
isomorphism. Then ¥(u) is a local diffeomorphism.

O
Theorem 1. B(u) is A-deformation of By = B(0) ), if and only if [B~'(n)A] belongs to
the submanifold yyw (By ' A).

Proof. Necessity. By the Corollary 1, the matrix [B~'(u)A] is represented as
[

[C(w]J[C(w)]™" and respectively [BTH(0)A] = [C(0)]J[C(0)]7", ie. [BT'(n)A] =
[C()C ()] [By " AJ[C(0)][C(m)] " In this case [C(1)][C(0)] o = ( ). M) # 0,
and consequently, [B~*(u)A] belongs to the submanifold vy (Bt A).

Sufficiency. If (B~ () A] belongs to the submanifold
v (By'A), then for any p [B~'(p)A] = [C(w)][By AlC(W)]™ = [C(w)][C(0)]

[B7HO)AJ[CO)][C(w)]™t = [S(w)]J[S(i)]7", and by Lemma 2, B(u) is A-deformation
of By. Continuity (or differentiability if B(u) is differentiable) of C(u) follows from
Lemma 5. In this case C'(u) has the form E + u(p), where u(p) belongs to the subspace
U, selected above.

O
Corollary 3. Let B(u) be an A-deformation of By = B(0). Then B(u) is a versal

A-deformation.

Proof. Indeed, let A(v) be other A-deformation of By = A(0) then [A™'(v)A] =
[C(V)][By*Al[C(v)]7!. Introducing the function x(v) = pu, we obtain [A™'(v)A] =
[CW)][B(k(v)) " A[C(v)] 7!, where [B(k(v))"'A] = By ' A.

O
Corollary 4. Let Bo_lA =J, and p = (p1, pa, - .., 1) be a vector parameter, in order
to B(p) be a versal A-deformation of By, it is necessary to all 9B~1(0)A/Ou; to have
the following form. Let U be arbitrary matriz (6) of size (n — 1)%, and U; be n-column
(wigy .-y Un_14,0), and U, be n-column (0, w14y -, Up—1;). Then, according to Remark 3,
matriz belonging to Ty(yw (J)) must have the form [0, -0y, U, — Us, ..., U, »—U,_ 1]

Remark 4. This condition is not sufficient.

11 01 —1
generates a third-order matrix | 0 1 0 which

b1 00 1

could not be transformed to the single Jordan cell, because it has two different eigenvalues

0 and 1.

Indeed, the matrix U = (

Theorem 2. Let the By'A = J and E;, be the matriz in which 1 is in place (i,s) and
zeros are at the other places, and s > 1+ 1. Then, for small € the matriz J + eE;s belongs
to yw(J) and E;s belongs to the tangent subspace T;(yw(J)).

Proof. Indeed, in the standard basis matrix J + e FE;s acts on it as follows: 0 <— e < ey <
P4 €5-13€5-1 T E€; < €5 €51 4 €y, In the basis o1 = €15 1051 = €510 =
. _ ) _ 2 ) : :
€s — ECL1; -5 P2s—j-2 = €259 — ECs_1;Pas i1 = €251 — E€s + E €415 ... 1t turns into
the Jordan block.
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0 1 *
0 1
Remark 5. Any matrix, which has form .
0 0 O 1
0O 0 O 0

belongs to v (J).

Indeed, it has one eigenvalue equal to zero and one eigenvector e, therefore, it could
be reduced to the Jordan block.

Definition 3. Let A(v) be A-deformation of By = B(0). We call A(v), induced from
B(p) (B(p) is A-deformation of By = B(0))), with the help of the map p = k(v), if
[A™ () A] =[B! (k(v))A].

Definition 4. Let B(u) be A-deformation of By = B(0). We call B(u) generating if any
other A-deformation of By (say A(v)) induced from B(u) by means of some map p = k(v).

Theorem 3. If the dimension of the tangent space to the orbit of B='(u)A at the point
p = 0 is equal to the dimension of the subspace U (introduced in Lemma 5) then the
deformation BO_IA 1S generating.

Proof. 1t follows from the Lemma 5 that the dimension of the tangent space to the
orbit of B~'(0)A at the point u = 0 is equal to dimension of the tangent space to the
orbit vy (By ' A). Therefore the mapping B~' (i) A defines a local diffeomorphism from the
neighbourhood of the point = 0 to the neighbourhood By'A in orbit vy (By ' A). Let T
be the inverse map such that for small y, p = T'(B~!(u)A). Then, if A(v) is an arbitrary
A-deformation of By = B(0), we can construct the mapping u = k(v) as u = T(A1(v)A).
Receives [A7Y(v)A] = [B7(k(v))A].

O
Remark 6. If the perturbation B~'(u)A of By'A is known, then it is possible to build
the corresponding perturbation B(u) of the operator By as follows.

Let B~ (u)A = By'A + S(u), or A = B(u)(By'A 4+ S(u)). Since the perturbation
Byt A+S(u) corresponds to some A-deformation of By, there is the maximal Jordan chain
o, w(z)(u), oy ™ (), for which (By ' A+S (1)) o™ = 0, 0" (1) = (By ' A+ (1))t (1)
(1 < 4 n). Therefore, if ~v(u) is the functional, determined by the conditions
(o0 ),y(u» =1, <g0( )(u),v(u)) = 0, k = 2,...,n, then the operator D(u) = By'A +
S(p)+ (- v(p )>g0 )() is reversible [1]. Operator D(p) is called the Schmidt’s regularization
for_operator 13- "(wA. Then A = B(u)[D(n) — (7)™ (w)] = B(u)D(n) -
(v ( ()))) ()™ (1), and by Lemma 2 B(u) = AD™' (1) + (D~ (1), 7(1))(Bo!™(0) +
X(p)).

2. Normal Forms and Bifurcations in the Case of the Maximal
Jordan Chain of Small Length

A. The Jordan Chain of Length Two. Since || R(z, p)|| = o(]|z]]), in the case of the
maximum Jordan chain of length 2, and also in the non-parametric case, the degenerate
differential equation in the basis of (1), (1) could be transformed to the system:
xh = x1 + f(x1, 29, 1), 0 = 3 + g(x1, 29, ), using reduction of Lyapunov — Schmidt [1].
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The functions f(xy, 22, 1) and g(x1, z2, p) satisfy conditions: f(0,0, 1) =0, g(0,0,u) = 0
u Df(0,0,u) = 0, Dg(0,0,u) = 0. Using the change of variables y; = x1 + f(x1, 22, 1),
Yo = xo this system could be simplified vy, = y1, yo = h(y1, Yo, p). If the function h(yy, yo, )
is smooth (analytical) and does not dependent on y;, then in a neighbourhood of (0,0)
y1 = 0, yo = 0 will be the only solution to this system. In general, by the theorem of
implicit function, yo = G(y1, 1), G(0,u) =0, G'(0, 1) = 0 and therefore the system takes
the form

ys=v1, v =yih(y, 1), |h(y1, 0)| = o(lya] + |ul)- (7)

In the simplest case, h(y1, ) = y1+p we obtain the normal form of "loss of uniqueness"
bifurcation y4 = y1, 92 = y2(y1 + ). When p =0, y1(t) = 0, y»(t) = 0 is the only solution
for zero initial value. When p # 0 this system could be transformed in to differential
equation (3y? + 2uy1 )y, = y1 or if y1 # 0, to (3y1 + 2u)y} = 1. Substitution z = 3y; + 24,
2 = 3y; allows to simplify the last equation to the form zz’ = 3, which has a smooth
solution in a neighborhood of t = 0 with initial value z(0) = 2u. Thus, the uniqueness is
violated.

Theorem 4. In order to system (7) has at the point = 0 the bifurcation "loss of
uniqueness” for solution which starts at the point (0,0) it is necessary, and in case

Oh(0,0)/0u # 0, it is sufficient, that h(0,0) = 0.

Proof. Necessity. Assume the contrary: h(0,0) # 0. Then in a neighbourhood of (0,0)
h(yy, i) = A+yihi(yy, p) +pha(yy, i), A # 0. Differentiating the equation vy, = yhy (y1, i)
with respect to t, followed by replacement of 3, to y; leads to an equation in a
neighbourhood of y; = 0 without degeneracy for small p:

Yy = [2A + 3yiha(y1, 1) + YR (y1, 1) + 2pha(yr, 1) + pya by (g, )]~

Thus, ¢ = 0 is a bifurcation point, as in any small p exists two small solutions of (7),
starting from the point (0, 0).

Sufficiency. Let the conditions h(0,0) = 0, 0h(0,0)/0u # 0. Then h(yi,p) =
yrhi(y1, ) + pha(ys, ), where hy(0,0) # 0, hence yo = yPhi(y1, ) + pyihe(yr, i), and
yo = yih(y1,0) = y2h(y1) for u = 0. Therefore, the first equation of the system (7) takes
the form: [3y?h(y1) + yih' (y1)]y; = v1. This equation has only one solution with initial
value y;(0) = 0, namely () = 0. If u # 0, then yo = A(u)y? + yihs(y1, 1), A(u) # 0,
for small y; and p. Substituting expression for y, in the first equation of the system (7)
for y1 # 0 gives [2A(1)yr + yiha(yr, W]y = i = v = 241 + yiha(yr, p)] ' This
equation has a nonzero solution with the initial condition y;(0) = 0. Thus, © = 0 is a
bifurcation point.

O

B. The Jordan Chain of Length Three. In the case of the Jordan chain of
length three, just like in the case A, the degenerate differential equation in the basis
of o @ (1), 3 (1) could be transformed to the system:

Yy =1, Yy =12+ Uifa(yr, v 1), Yz = fa(y1, va, ). (8)

Function f3 satisfies the following conditions f3(0,0, ) = 0 and D f3(0,0, ) = 0.
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Consider the particular case of the system (8)

Yo =1, Ys=1Yo, Yz = HYi+ Y. (9)

Let show that u = 0 is a bifurcation point "changing of the domain of solution". First
consider the system (9) in a punctured neighbourhood of 1 = 0, (u # 0). This system
takes the form:

Yo =11, 201Y; + 2Y2y1 = Yo, (10)

which is equivalent to the system (when y; # 0)

Yo =Yt 20y = Yo — 200, (11)

because [9] the solutions of both of these systems have the same orbits (when y; # 0
2

and yo # 0 ) as the solutions of the equation % = yryzlym. The system (11) by the

Existence and Uniqueness theorem has solution started from each point (y?,%9), in some
neighbourhood of (0,0). To clarify the behavior of solutions in a neighbourhood of y = 0,
1 = 0 we repeat the process of blowing-up of singularity by transition to the new variables
(y1,u) where yy = uy?. Then 5 = u' -y +u-2y1(1/2p) (Y2 — 29011) = v’ -y +u-y1(1/ ) (u-
2 _ 2 - 3)
n u-Yi)-
By substituting this into (11) we obtain:

u=T1—u-(Up)(u-yn—2u-y7), 20y =u-y; —2u-y. (12)

After this substitution the singular point (0,0) "blow up" in the line (0, u). Therefore,
it is necessary to investigate all the singular points of the system (12) on this line. However,
the vector field defined by the right of (12), has no singular points on this line, because
when y; = 0 it is equal to (1,0).To study the solutions of the original system go back to
the variables y1, y» = u - y?. When pu = 0 system (9) takes the form v, = y1 , y5 = ¥o,
ys = Y5 = yh = y1, 2t1y2 = Y2. If y» # 0 these systems have the solution y; = 1/2,
Yo =y + /2, ys = (45 +1/2).

Thus, in the first case (u # 0), the manifold of the initial values of the solutions were
two-dimensional, and in the second case — one-dimensional.

Remark 7. If for degenerate differential equation, with the maximal Jordan chain
consisting from three elements, the non-linear part does not depend on the variable vy,
then it has no solutions in some deleted neighbourhood of the point y = 0.

Indeed, the system (8) then takes the form y) = vy , ¥4 = y2, y3 = f3(y2, ) = v5 = v,
f4(ya, 1)y1 = y2 and since D f3(0, u) = 0, the second equation of the last system could be
reduced by yo when yo # 0 which gives fy(yo, #)y; = 1. It is obvious that this equation
could not have small solutions, so y = 0 is the only small solution of the system.

Remark 8. The last result does not take place for the degenerate equation with the
maximal Jordan chain consisting of four elements. This is evident from example:

Yo=Y, Ys =2, Yy =Yz, Ya=UYo-Ys= Yo=Y, Ys=1Y2, Y1 Y3+Ys=Us

By substituting the second equation, we get: y5 = y1, 2y1y2(1 —y1) " +y3(1—y1) "2y] = ya.
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If 4o # 0, the system takes form y5 = y1, y2v] = (1 —y1)? — 2y1(1 — 31). The system
has a solution, starting at any point (y?,49), y5 # 0.

Lemma 6. (A sufficient condition for the occurrence of bifurcation "of the changing of the
domain of solution”). In order to point u = 0 was a point of bifurcation "changes of the
domain of solutions” for the system (8) in the neighbourhood of y = 0, = 0, it is sufficient

that the function f3(y1,y2, pt) has the form f3(y1,yo, p) = hi(ye, ) + pha(y1, Yo, ), where
Ohy(0, 1) /Oy2 = 0, Dhs(0,0, ) = 0 and D(0hs/dy1)(0,0, i) # 0.

Indeed, if the u = 0, then the system (8) takes the form vy}, = y1, ¥4 = ya+y? f2(y1, y2, 0),
y3 = h1(y2,0). After substituting the third equation by the second: y10h1(ys, 1) /0ys = yo2+
y3 fa(y1, y2,0), we can use the implicit function theorem in order to have yo = F'(y1). Thus,
if ;1 = 0 solution of (8) lies on the curve (y1, F'(y1)), then the second equation of the system
(8) can be written as (Ohy/0ya)y1 +p(Ohe/Oys)y1 +1(Oha /Oy1 )y = y2+v3 fo(y1, Yo, ). The
system (1(Oha/0y1)yy = Yo + 7 f2(y1, Y2, 1) — (Oh1/Oya)yr — 1(Oha/Oy2)yn, Y5 = y1 when
p # 0 has a solution in a neighbourhood of (0,0) starting at any point (y?,%9), to which
(ah2/ayl)(y?7 yg? VJ) 7é 0. Since (ahQ/ayl)(Ov Oa :u) = Oand D(ah2/ay1)<0’ 07 VJ) 7é 07 then by
the implicit function theorem, the set of solutions of the equation (Ohsy/0y1)(y?, 49, 1) = 0
is one-dimensional, so there is a bifurcation "of the changing of the domain of solution".

Acknowledgements. This work was financially supported by the Ministry of
Education and Science of Russia within the framework of stake tasks 2014 /232. The study
was conducted with financial support of RFBR, research project No 15-01-08599, 15-41-
02455p _povolgie_ a.

References

1. Vainberg M.M., Trenogin V.A. Theory of Branching of Solutions of Non-Linear Equations.
Leyden, Nordhoof International Publishing, 1974.

2. Arnold V.I. Geometricheskie metody v teoriy obyknovennykh differentsialnykh uravneniy
|Geometrical Methods in the Theory of Ordinary Differential Equations|. Moscow, Moscow
Center for Continuous Mathematical Education, 1999.

3. Shui-Nee Chow, Chengzhi Li, Duo Wang. Normal Forms and Bifurcation of Planar Vector
Fields. Cambridge University Press, 1994.

4. Jooss G., Adelmeyer M. Topics in Bifurcation Theory and Applications. Singapore, New
Jersey, London, Hong Kong, World Scientific, 1992.

5. Loginov B.V., Rousak Yu.B., Kim-Tyan L.R. Normal Forms of the Degenerate Differential
Autonomous and Non-Autonomous Equations with the Maximal Jordan Chain of Length
Two and Three. The Bulletin of Irkutsk State University. Series: Mathematics, 2015, vol. 12,
pp- 58-71. (in Russian)

6. Loginov B.V., Rousak Yu.B., Kim-Tyan L.R. Normal Forms for the Degenerate Non-
Autonomous Differential Equations in the Spaces R"™, n = 2,3,4. Sbornik nauchnykh trudov
"Prikladnaya matematika i mekhanika", Ulyanovsk, 2014, no. 10, pp. 142-160. (in Russian)

7. Loginov B.V., Rousak Yu.B., Kim-Tyan L.R. Differential Equations with Degenerated
Variable Operator at the Derivative. Current Trends in Analysis and Its Applications.
Proceedings of the 9th ISAAC Congress, Krakow 2013, 2015, pp. 101-108. DOI: 10.1007/978-
3-319-12577-0 14

Bectauk FOYpI'Y. Cepusa «MartemaTudecKoe MoJejinpoBaHue 13
u nporpammupoBanues (Becruunk HOYpI'Y MMII). 2017. T. 10, Ne 3. C. 5-15



L.R. Kim-Tyan, B.V. Loginov, Yu.B. Rousak

8. Marszalek W. Fold Points and Singularity Induced Bifurcation in Inviscid
Transonic Flow. Physics Letters A, 2012, vol. 376, issues 28-29, pp. 2032-2037.
DOI:10.1016/j.physleta.2012.05.003

9. Stepanov V.V. Kurs differentsialnykh uravneniy |[The Course of the Differential Equations].
Moscow, Gosudarstvennoe izdatel’stvo tekhniko-teoreticheskoy literatury, 1950.

Received April 8, 2015

YAK 517.9 DOI: 10.14529/mmp170301

HOPMAJIBHBIE ®OPMBI BHIPOXKJIEHHBIX ABTOHOMHBIX
JIN®PEPEHIINAJIBHBIX YPABHEHU

C MAKCUMAJIBHON >KOPJIAHOBOM ITEITOYKOM

U IIPOCTEMIIINE I[IPNJIOXKEHI A

.P. m-Ta .B. .b. :

J.P. Kum-Tan', B.B. Jloeunos®, FO.B. Pycax?

! Hanmonampawiii nceaenosareabckuit Texnonorndeckuit yausepcurer MUCuC,
r. Mocksa

2 VILAHOBCKHI TOCYIapPCTBEHHbIH TeXHNICCKHH YHIBEPCHTET, T. YIbIHOBCK

3 JlemapTaMeHT CONMAIBLHOTO cepBHCa, I. Kanbeppa, ABcrpaind

Beipoxknennsie  guddepennuaibHble ypaBHEHWs, KaK  9acTh asrebpo-
nudHepeHImaIbHbIX  YPABHEHU, TOCTEIHUE HIEeCATUIETHS BBI3BIBAIOT BCE OOJBIIHIA
HHTEPEC CPey UCCIeoBaTeNeil, KAk B CUITy PUBJIEKATEILHOCTH PACCMATPHUBAEMBIX TEOPE-
TUYECKHUX BOIMPOCOB, TAK U B CUJLy UX IPUJIOKeHu#. B Hacrosinee Bpemsi pa3BuTbIe B IAHHOIA
00IaCTH MeTO/b! MCMOB3YIOTCS JIJIsi CUCTEMHOTO MOJIEJIMPOBAHUS U AHAJIN3A dJIEKTpUte-
CKUX W 3JIEKTPOHHBIX Ienel, MOIeIMPOBAHUS XUMAIECKUX PEAKIUI, TEOPUN ONMTUMUBAIIAN
U aBTOMATHUYECKOTO PETyIHPOBAHUSA, a TAK¥Ke BO MHOIHX APyrux obmacrax. B Hacrosieit
pabore Teopus HOPMATIBHBIX (opM auddepeHITnaIbHBIX YPaBHEHH T, OepyIas CBOe HAYAIO
B paborax A. Ilyankape, a mocienHee BpeMs pasBuBaemasi B paborax B.M. Apuonabua u
€r0 YUYEHUKOB, IAIITUPYETCsT K MPOCTEHIITNM CIyYasiM BRIPOXKIECHHBIX TU(DdOEPEHITHATBHBIX
ypaBHenwuii. /Iy 3TOrO CyIIECTBEHHO HCHOJb3YeTCS TEXHUKA, >KODJAHOBBIX IIEMIOYEK,
MIABHO U IAPOKO WCIOJb3yeMasi B PA3JUYHBIX 3a/aadax Teopuu Oudypkaruu. M3ygaiorcs
HOPMAJIbHBIE (DOPMBI BBIPOXKICHHBIX N DEePEeHITHATBHBIX YPABHEHNUH B CIyYae CYIIECTBO-
BaHMA MAKCHMAJIbHON >KOPAAHOBOM 1ermodKu. I1oapobHO M3ydatoTcsa CIydan pa3sMepHOoCTeit
2 u 3. Hopmanbubie (POPMBI SBIISIIOTCST €IWHCTBEHHO BO3MOXKHBIMU TPEICTABUTEISIMU
BBIDOXK IEHHBIX AudQ HEePEeHIMATBHBIX YPABHEHUN, CBOMSAININXCS K CBOEH HOPMAJIBHOM (hopMe.
[TosTomy HOpMABHBIE (DOPMBI C/IEIYET CIUTATH MOMIETHHBIMU.

Karouesve caosa: evposicdennvie duppepenyuarbrbie Ypasrerus; HOPpMaibHble Bop-

Mbl; wcopdcmoeu yenovku.
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