MSC 93A30 DOI: 10.14529 /mmp170403

ITERATIVE EQUITABLE PARTITION OF GRAPH AS A MODEL
OF CONSTANT STRUCTURE DISCRETE TIME CLOSED
SEMANTIC SYSTEM

E.E. Ivanko

Institute of Mathematics and Mechanics, Ural Branch of the RAS, Ekaterinburg,
Russian Federation

Ural Federal University, Ekaterinburg, Russian Federation

E-mail: viatore@ya.ru

Constant structure closed semantic systems are the systems each element of which
receives its definition through the correspondent unchangeable set of other elements
(neighbors) of the system. The definitions of the elements change iteratively and
simultaneously based on the neighbor portraits from the previous iteration. In this paper,
I study the behavior of such model systems, starting from the zero state, where all the
system’s elements are equal. The development of constant-structure discrete time closed
semantic systems may be modelled as a discrete time coloring process on a connected graph.
Basically, I consider the iterative redefinition process on the vertices only, assuming that
the edges are plain connectors, which do not have their own colors and do not participate
in the definition of the incident vertices. However, the iterative coloring process for both
vertices and edges may be converted to the vertices-only coloring case by the addition of
virtual vertices corresponding to the edges assuming the colors for the vertices and for the
edges are taken from the same palette and assigned in accordance with the same laws. I
prove that the iterative coloring (redefinition) process in the described model will quickly
degenerate into a series of pairwise isomorphic states and discuss some directions of further
research.
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Introduction

A closed semantic system (CSS) may be thought as a system each element of which
is defined through other elements of this system. One of the most natural and important
CSSs is language. Every child at the age of 3-5 years is full of questions: "Why?", "What
for?", "How?" [1]. At that time, the child’s world view is growing and getting as closed as
possible: every word claims to be explained in terms of other words.

One of the most simple CSSs is a discrete time system with a permanent structure:
1) the number of the elements that are involved in the definition of each element of such
system does not change with time; 2) all the elements are redefined simultaneously, basing
on the states of the neighbours taken at the previous simultaneous iteration. In this paper,
I study the behavior of such trivial systems, starting from the "zero" state, where all the
system’s elements are equal. In contrast with the above mentioned growing CSS of small
kids, a CSS with a constant structure resembles an adult’s world view, where the addition of
new notions and connections between them ceases as the personal world view approaches
the best known contemporary world view of the humanity. The simultaneous iterative
changes in discrete time is a reasonable assumption as far as we consider an artificial CSS
designed for a deterministic Turing machine equivalent [2|. However, the discreteness can
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hardly correspond to real-world examples, so it would be challenging to get rid of it in the
future.

The development of the described constant-structure discrete time CSS may be
modelled as a discrete time coloring process on a connected graph. From now and till
almost the end of the paper I will consider the iterative redefinition process on the vertices
only, assuming that the edges are plain connectors, which do not have their own colors and
do not participate in the definition of the incident vertices. Initially, all the vertices have
the same "type", so at the first iteration the only difference between any 2 vertices is the
number of their neighbours (degree). For illustrative purposes, we may assign each degree
a specific "color". At the second iteration the "neighbour portrait" of each vertex becomes
more complicated (e.g., "5 neighbours" at the first iteration becomes "2 red and 3 green"
at the second). This iterative coloring process (see Fig. 1) produces equitable partitions |3]
(perfect colorings, regular partitions or graph divisors), which are well known [4-6] and
were successfully used in e.g. graph isomorphism heuristic Nauty [7] (the coloring process
in the latter is similar to the Algorithm of this paper).
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Fig. 1. Two iterations of the coloring process

How will this iterative coloring process behave? Will the size of the palette ever increase
or it can decrease and then oscillate? Will the process become self-repeating? If yes, then
how fast and what will be the cycle size? The next section gives the answers to these
questions.

1. Mathematical Model

There are some little less common mathematical notations used below, which T would
rather state explicitly: a) the number of adjacent vertices for each v € V in simple G
is equal to the degree of v and is referred to as deg(v); b) the image Y of the mapping
¢: X — Y is referred to as ¢[X] and c) an arbitrary (possible multi-valued) mapping
between X and Y is referred to as X = Y.

Let G = (V, E) be a simple graph with vertices V' and edges E. Each vertex possesses
a color, which changes iteratively depending on the colors of the vertex’s neighbours. Let
Pal; C N be the set (palette) of colors and Col;: V' — Pal; be the coloring function at the
i-th iteration. The iterative coloring process may be represented by Algorithm (see also
Fig. 2).

How will this ITCP behave at infinity? Below I prove that, starting from some iteration,
all the following colorings will be pairwise isomorphic in the sense of the following
definition.

Definition 1. Two colorings Col; and Col; are isomorphic (Col; ~ Col;), if there exists
a bijection ¢: Pal; <> Pal; such that Vv € V ¢(Col;(v)) = Col;(v).

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 27
u nporpammupoBanues (Bectunk FOYpI'Y MMII). 2017. T. 10, N 4. C. 26-34



E.E. Ivanko

Algorithm. Infinite iterative vertices coloring process (IICP)

Paly = 0;

Vo € V Coly(v) := 0;

Vv € V' Porty(v) := (k(v)), where k(v) = deg(v);

1:=1;

repeat
let x; be some indexing bijection x;: Port;_1[V] <> 1,|Port;_1[V]|, then the
current palette Pal; :== x;[Port;_1[V]] (consists of the indices of the elements
of Port;_1[V]);
let K; := |Pal;l;
build a new "neighbourhood portrait" of each vertex:

' Port;(v) := (k{(v),... ki(v),... K, (v)),

where k}(v) is the number of adjacent vertices of v € V' that possess the color
J € Paly;
1i=1+1;
until False.

the sequence of
the numbers of
the neighbors of | Port Port, ooo
each color

current graph coloring,
depending on the
vertices' portraits from the | Col Col, ooo
previous iteration

current palette
made of the
unique portraits Pal Pal 000
from the previous 1 2
iteration

Fig. 2. Scheme of infinite iterative coloring

Lemma 1 makes the first step in this direction. It shows that two consequent isomorphic
colorings result in the degeneration of the following IICP.

Lemma 1. If Coly_1 ~ Coly for some L, then all the following colorings will be pairwise
isomorphic: VL' > LNYL" > L Coly ~ Colpn.

Proof. Tt is enough to prove that Coly, ~ Coly 1. Let us select an arbitrary v € V' and
take the portrait of v from the previous iteration, which corresponds to Coly 1 (v):

(KE(0), .. ke, (1) = Xih (Colpia (). 5

Let us consider the mapping ¢ : Port_1[V] — Porty[V]:

O (W) bl () ) = (RE) kR, (0)) (2)

and prove that it is a bijection.
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1) 9 is defined for all elements of Port;_;, since it is defined for all v € V.

2) Each portrait p from Porty, corresponds to at least one vertex v € V' at the L-th
iteration; selecting this v" in (2), we get at least one preimage for p in Port;_;, which
means that 1 is surjective.

3) The single-valuedness of 1 is slightly more complicated to prove; suppose there is
a portrait from Port;

p= (KM R 00)) = (R ), R (1)) (3)
that is mapped by ¥ into two portraits from Porty,

pr= (kf(v1),..., kg, (v1)) and po = (kf(v2),... ki, (v2)).
Since Coly_1 ~ Coly, there exists an isomorphism ¢: Paly_; <+ Paly, such that
VeV Vie LKy k' '(v) =kl (v). (4)
Considering this, we can write

R 7 4 ®3) L (4)
Vie LKL ki(v) = k5 (v) = k5 (v2) = kg (v),
which means that p; and py are equal elementwise and proves the single-valuedness of .
4) The injectiveness of ¢ may be proved in the same manner; suppose there are two
portraits from Port;_4

P = <kf’1(vl), o kf(il(vl)> and ps = (kf’l(w), o k;gil(ug))
that are mapped by v into one portrait from Porty,

(ki (v1), ... kg, (v1) = (K (v2), ..., k%, (v2)) - (5)

Returning to (4), we have
. —_— _ 4 5 4 _
Vie TR, k(o) @ kL (o) 2 kL (v2) 2 K (m),

which proves that v is injective and therefore is a bijection.

Applying 1! to the right-hand side of (1), we get an element of Port;_;, which can
be mapped further to a color from Paly, by xr. The final sought-after mapping ¢: Pal; <>
Palyp 1 is the composition of the three above-mentioned mappings,

¢ =xXrt10¢ox,

which is a bijection since all the composing mappings are bijections.
O
At this point, we know that two consequent isomorphic colorings make the further
coloring process degenerated, but is this situation impossible, probable or inevitable? The
answer to this question starts with the analysis of the behavior of the palette size. The
number of colors in the palettes evidently belongs to 1, |V, and intuitively this number
either increases or remains constant during the IICP.
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Lemma 2. The size of the palette never decreases: Vi € N Vv, v € V' (Coliy1(v1) =
COZH_l (UQ)) = (OOli(Ul) = COli(UQ)).

Proof. Let us use induction on ¢. The base case for ¢ = 0 is true since all the vertices have
the same color at the first iteration: Yo € V' Coly(v) = 0.

Inductive step: assume the statement is true for all © < L and prove it for ¢ = L. Let
Vi = {v],..., o7} be the adjacent vertices of v; and Vo = {vi,...,v7'} be the adjacent
vertices of vy in G.

Since Col;y1(v1) = Col;y1(ve) and X141 is a bijection,

Portr(v1) = X 41(Colip1(v1)) = X111 (Colri1(v2)) = Porty(va),
which means that n = m and there exists a bijection ¥ : Vi <> V5, such that
VieTI,n Coly(v(v])) = Coly(v]).
By induction,
VieTn (Coly(¢(v])) = Coly(v])) = (Colr1(¢(v])) = Coly1(v])),
which means that Port;_q(v1) = Porty_i(ve) and thus

Colr(v1) = xp(Porty_1(v1)) = xp(Porty_1(vs)) = Colp(vy).

O
Now we know that at each iteration the number of colors either increases or remains

constant. We also know that the palette size cannot be arbitrary large, it is limited by V.
Putting together both results, we get that an [ICP may contain only a finite number of
the steps where the palette size grows. In not more than |V| iterations, an IICP will come
to the situation, where the palettes at two consequent iterations have the same size. The
consequences will be radical.

Lemma 3. Either the size of the palette increases or the two last colorings are isomorphic:

(K,L = Ki+1) = (COZI ~ COli+1>.

Proof. T will prove that if K; = K;,1, then the mapping ¢: Pal;, = Pal;;1, defined as
¢(Coli(v)) = Coliy1(v) Yv € V, is a bijection. Let’s argue by contradiction: suppose
K; = K;i1, but ¢ is not a bijection. Since ¢ is defined for all v € V, it is completely
defined on Pal; and is a surjection onto Pal;,1; it is also injective by Lemma 2. The last
option for ¢ not to be a bijection is multi-valuedness. Suppose that

" eV (v £0") & (Coli(v') = Col;(v")) & (Coliy1 (V') # Colivi(v")). (6)
Let Vi = {v € V: Col;(v) = Col;(v")} and Vo = V' \ V| (see Fig. 3). The set V5 is not
empty, since otherwise
(6)
|Col;[Vi]| + |Coli[Va]| =1+ 0=K; = Ki11 > 2.

There are no colors from Col;,1[V;] among the colors from Col; 1[V5] since otherwise
(see Fig. 3) Jv} € Vi,v5 € Va: Colitq1(vy) = Colipi(vy) but, by construction of Vi, Va,
Col;(v}) = Col;(v") # Col;(v3), which contradicts the injectiveness of ¢. Thus,

OOli—H[‘/l] N COlH_l“/Q] = ¢ and Ki-‘,—l = |COZH_1[‘/1]| + |COll+1[‘/é]|
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The number of distinct colors in C'ol;1[V5] is not less than |Col;[V3]| = K; — 1 since ¢
is injective and does not map distinct colors into the same one.
By the definition of V; and assumption (6), we have v’,v"” € V; and
|Colin[Vi]| = [{Colisr (v), Coliga (v")} = 2,
which means that

Ki1 = |Colia[Vi][ + |Colia[Vo]| = 2+ (Ki — 1) = K; + 1

and contradicts the assumption K; = K;,;.

O
V2 v v v" \%e Vl
® @ ® o O O O |
o S ® ® e O S e i+1

Fig. 3. Illustration for Lemma 3

The results of the previous lemmas may be summed up as a theorem.

Theorem 1. The coloring process described in the Algorithm converges to an unchanging
equitable partition in at most |V| iterations.

Edge coloring. Until now, all objects in the CSS were defined through other objects
by means of one-type connections. One of the important generalizations of such approach
is the introduction of connections of different types. As far as we talk about closed semantic
systems, the "type" of a connection should be defined within the system. By analogy to
the objects defined through their neighbours, the connections could be defined through the
objects, which they relate. In the considered graph model of CSS, it means that the edges,
just as the vertices, are subjected to an iteration coloring process based on the portraits of
neighbours. During such an expanded coloring process, the color of a vertex is defined by
the colors of the adjacent vertices and incident edges, and the color of an edge is defined
by the colors of its 2 incident vertices.

This iterative coloring process for vertices and edges may be converted to the vertices-
only coloring case by the addition of "virtual" vertices corresponding to the edges (Fig. 4)
assuming the colors for the vertices and for the edges are taken from the same palette and
assigned in accordance with the same laws.

2. Discussion

In the present paper I showed that each CSS with a constant structure and discrete
time ceases to change rather quickly. The future research could aim at getting the
CSS model closer to the real world. The consideration of more complex unsynchronized
dynamical structures will change, to all appearances, the further research methods from
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Fig. 4. Transformation of graph to consider the influence of edges

pure mathematical to statistical and computational. Below I concern several conceivable
directions for the further investigations:

1. The first step towards real complex systems is to get rid of the discreteness of time. In
the majority of real complex systems it seems unnatural to change the states of all elements
simultaneously. Such desynchronization will mix the palettes, so the corresponding formal
coloring process should be considerably different.

2. The second step is the consideration of the systems that start from an arbitrary
state, not only the "zero state" of Algorithm, where Yv € V' Coly(v) = 0. It is easy to see
that in this case Lemma 2 is not always true (see Fig. 5), therefore, Lemma 3 would also
need a different proof since the current one relies on Lemma 2. Nevertheless, it seems the
proof of convergence can be generalized to the case of arbitrary initial states.

O

0=1®
O=1®+10©
®

Fig. 5. Example of the palette’s growth starting from a non-zero initial state

3. The most interesting research direction is the analysis of behavior of the CSSs with
(stochastically) varying sets of objects and connections. Such CSSs could presumably be
addressed by means of applied statistics and multi-agent modelling. In this respect, the
underlying graph model could be replaced with the model of horizontal gene transfer [§]
where each agent is "defined" through the influence of the agents encountered during
stochastic motion.
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NTEPAILIMOHHOE PABHOMEPHOE PA3BUEHUE I'PA®A
KAK MOJEJIb INCKPETHOM 3AMKHYTO CEMAHTNYECKOI
CUCTEMBI C IIOCTOSIHHOII CTPYKTYPOW

E.E. Hsanxo

WNucruryr maremarukn u Mexaaukua YpO PAH, r. EkaTepunbypr,

Poccuiickas @eneparius

MexaHHKO-MaITMHOCTPONTEIbHBI HHCTUTYT, Y pajabCcKuii (beiepaibHblii YHUBEPCUTET,
r. Exarepun0bypr, Poccuiickas @eyepanus

3aMKHYTBIE CEMAHTUIECKUE CUCTEMBI ¢ TIOCTOSTHHOM CTPYKTYPOii 9TO CUCTEMBI, B KOTO-
PBIX KAYKIBII 9JIEMEHT OMPEIE/IsIeTCs C TIOMOIIBI0 COOTBETCTBYIOIIETO €My (DUKCHPOBAHHOTO
MHOXKECTBA APYTUX IJTEMEHTOB cucTeMbl. Onpeie/ieHnst 9/IeMEHTOB U3MEHSIIOTCST UTEPATHBHO
U OJTHOBPEMEHHO Ha OCHOBE <IOPTPETOB COCeeil>, IOy YeHHBIX Ha IPeIbIAyIIeil nTepalun.
B nacrosmeit crarbe aBTOp PACCMATPUBAET MOBEIEHNE TOMOOHBIX MOIEIBHBIX CHCTEM, B KO-
TOPBIX TIPOIECC PACKPACKN HAYUHAETCS ¢ HYJIEBOTO COCTOSTHUSA, TJIe BCE JIEMEHTHI NIEHTHUY-
HBI. 3MeHeHre 3aMKHYTHIX CEMaHTUIECKUX CHCTEM C MOCTOSHHOM CTPYKTYpPOi M JUCKpeT-
HBIM BPpEMEHEM MOKeT MOJeJMPOBAThCA KaK JUCKPETHBIH MPOIECC PACKPACKU HA, CBI3HOM
rpade. B OCHOBHOM B CTaThe PACCMATPUBAETCA MTEPAIMOHHBIN MPOIECC MEPEOPEIeTCHIH
TOJIBKO HA BEPINUHAX, B IMPE/INOJOKEHNN, 9TO pebpa ABILIOTCH He DOsiee, YeM CBA3AMH,
He 00J1a/aI0UMu COOCTBEHHBIMY [IBETAMU U HE YYACTBYIOIIMMH B IIPOIECCE DPACKPACKH.
Mexay TeM, UTepAIHOHHBIN MPOIECC OMHOBPEMEHHON PACKPACKN BEPIIWH U pebep MOXKeT
OBITH CBEJIEH K MIPOIECCY PACKPACKU TOJIBKO BEPIIWH C MOMOIIBIO J00ABIEHNsT BUPTYaIbHBIX
BEPIINH, COOTBETCTBYIOINX PedpaM MPHU yCJIOBHU, 9TO I[BETA I PEAJBHBIX W BUPTYAJb-
HbIX BepiiuH (pebep) BbIGMPAIOTCS M3 OAHOIO MHOXKECTBA IO OJHMM HpaBuiaM. B crarbe
JOKa3bIBAETCS, UTO MOMOOHBIN NTEPATUBHBIN MPOIECC MEPEOIPEeTIeHN Ha OCHOBE IIBETOB
cocenieit GBICTPO BHIPOXKIAETCS B TTOCJIEI0BATEIHLHOCTD TTOMAPHO W30MOPMHBIX COCTOSTHUH, a
Tak)ke 00CYXKIAIOTCS BO3MOXKHbBIE HAIPABJIEHUS IAJBHENIINX UCCIeTOBAHMH.

Karouesvie ca06a: 3aMEHYMAA CEMAHNUNECKAA CUCTNEMA; 2Pad; U30MOPHUIM.
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