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We prove existence of upper and lower solutions in reverse order with respect a part of
the variables in a system of nonlinear ordinary differential equations modelling acidogenesis
in anaerobic digestion. The corresponding existence theorems are established. The upper
and lower solutions are constructed analytically, by defining semi-trivial solutions for each
of the variables in the model. We introduce the concept of indicator semi-trivial solutions.
Finally, we numerically solve the system supported by the Matlab software and matching
the graphs of the numerical solutions with analytical solutions is found.
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Introduction

Anaerobic digestion (AD) is a microbial fermentation in the absence of oxygen results
in a mixture of gases (mainly methane and carbon dioxide), known as "biogas" and an
aqueous or "sludge" suspension containing the microorganisms responsible for degradation
of organic matter. The raw material used primarily to be subjected to this treatment is
any residual biomass that has a high moisture content, such as food scraps, leftover leaves
and herbs to clean up a garden or orchard, livestock waste, sludge treatment plants urban
wastewater and domestic sewage and industrial.

In practice, engineering becomes accustomed to consider three stages for solid waste
or sludge (hydrolysis, acidogenic, methanogenic) and two for liquid waste (acidogenic and
methanogenic) [1].

We consider the following system of nonlinear ordinary differential equations for the
process AD [2]:

Balance of biomass

% = (11(S1) —aD) X; (acidogenic) (1)
% = (u2(S2) —aD) Xy (metanogenic) (2)
Balance of substrates
dd_57;1 = D (Stin — S1) — k1 11(S1) X7 (acidogenic) (3)
dd—% = D (S9in, — S2) + ko p1(S1) X1 — k3 p2(S2) X2 (metanogenic) (4)
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Balance of alkalinity

dA
—=D(A4;,,— A 5
D4, -4 6)
Carbon rate of change
ac
o D (Cipy — C) + ka p1(S1) X1+ ks po(S2) Xo — K1, [C+ Sy — A— KyPel. (6)

The expression Kpa(C' — Ky Pc) describes the molar flow rate of inorganic carbon
from its liquid phase to its gas phase and the product Ky Pc determines the concentration
of dissolved oxygen in C.

Net rate of methane production

dt

= kg M2(S2) Xo. (7)

The kinetic comportment is nonlinear and occurs because of reaction rates, which
are given by: Monod kinetics p;(S1) = Mlmawﬁ and Haldane kinetics us(S:) =
1
s
Momazx 52 2
TH+S2+KSQ
In this case the variables are:

. Bacterial rate represents yield related to both bioprocesses.

Sy := Organic substrate concentration [g/]]

X := Concentration of acidogenic bacteria [g/]]

Sy := Volatile fatty acids concentration [mmol/l]

X, := Concentration of methanogenic bacteria [g/]]
A := Concentration of alkalinity [mmol/]]

C' := Total inorganic carbon concentration [mmol/]|

Fy; := Methane concentration [mmol/1 d~*].

The main objective is to build lower-upper solutions for the system formed by
equations (1) and (3) in reverse order with respect to a part of variables with initial
conditions on a given observation interval [3].

The corresponding equations:

u = f(z,u,v) in I,
/
v

(8)

where I = [a,b], v = X, v = S;. Note that the definition of lower-upper solution (8)
depends greatly on the properties of monotony of f and g. Therefore following notation
of C.V. Pao in [4] and new results presented in [5], we can classify (8) according to their
relative monotony, as follows:

1. Quasi-monotone systems: f and g are nondecreasing in v and u, respectively or f
and g are nonincreasing in v and u, respectively.
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2. Mixed quasi-monotone systems: either, f is nondecreasing in v and g is nonincreasing
in u, or vice versa.

3. Nonquasi-monotone systems: the system does not fall in any of the previous cases.

Case 1 implies the existence of lower (u.,v,) and upper (u*,v*) solution with ordering
in [

It is impossible to enforce quasi-monotonicity by a simple transformation for Case 2. Case
3 requires some regularity conditions imposed on f and g.

In the above system, the usual order (X, < Xf) is considered for the lower and
upper solutions. For the variable S; the situation is different because of the opposite case
59 < S19. We consider the nonlinear equation [6]

u'(t) = f(t,u(t), tel=][0,T], T>0 9)

satisfying the condition [6]
9(u(0), u(T)) = 0, (10)

where f : I x R — R and g : R?> — R are continuous functions. If g(z,y) = x — ¢ with
¢ € R, then (10) is the initial condition

u(0) = c.
Definition 1. [6]
e we CYI) is a lower solution to (9) if
W(t) < fltw(t), tel

and
w(t) <pt), tel (11)

e 3 CY(I) is upper solution to (9) if
Bl(t) > f(t,B(t), tel

and
Bt) <w(t), tel (12)

For u,v € C(I), u < v define the set
[u,v] = {Vw € C(I) : u(t) <w(t) <ov(t), witht € I},

Definition 2. [6] We say that w,3 € C'(I) are lower and upper coupled solutions to
problem (9), (10) in direct order if w is a lower solution and [ is an upper solution to
equation (9), with condition (11) and

max{g(w(0),w (7)), 9(5(0), B(T))} < 0 < min{g(5(0), 5(T)), 9(B(0),w(T))}-
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Definition 3. |6] We say that w,3 € C'(I) are lower and upper coupled solutions to
problem (9), (10) in inverse order if w is a lower solution and (3 is an upper solution to
equation (9), with condition (12) and

max{g(w(0), w(T)), g(6(0),w(T))} <0 < min{g(5(0), B(T)), g(w(0), 3(T))}-

Theorem 1. [6] It is assumed that w, B are lower and upper solutions coupled in inverse
order to problem (9), (10). Additionally it is assumed that the functions

ho(2) = g(x,w(T)),  hg:= g(z, 5(T))

are monotonic (both non-increasing or non-decreasing) in [3(0),w(0)]. Then there exists
at least one solution of problem (1) —(3) in [B,w].

The inverse order of lower and upper solutions for system (1) — (7) were not previously
considered. The outline of this paper comprises the following stages: definition of trivial
solutions for the complete system, construction of lower and upper solutions for a
subsystem, study and formulation of the corresponding theorem for the existence of lower
and upper solutions.

Definition 4. A trivial solution of system (1) — (7) has the form

El(Slina O>7 EQ(Slinu 07 SZina O)? E3<OJ 07 S2zn)

13
E4(Slin70782in707Ain)> ES(Am)a EG(Oa S2in70) ( )

where
Xl - 07 X2 - 07 Sl - Slin
SQZSQina A:Alna C:Ci’ru FM:0

We do not consider other possibilities of trivial solutions in this document. A similar
approach can be found in [7].

1. Main Results
1.1. Lower and Upper Solutions to the Initial Value Problem

We are interested in solutions of nonlinear system with initial conditions, which models
the dynamics of biomass and substrate in the acidogenic.

% = (Mlmazslf—}(& — aD) X, 2R (t, X1(t), S1(1)) (14a)

- D (S1in = 81) = ki X £ G(t, X1(t), S1(1)) (14b)
dt ™S+ K, : ’ )

Xi1(0) = a, (14c)

S1(0) = o (14d)

Where t € [0,7] = I, with T > 0 and F,G are functions of class C°(I) = C(I), i.e.,
continuous functions in I.
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A. Define
Sl Sl
Si) = ——— —aD and Sy) = —_—
The function ¢(S;) = p1,,. <—4— with p,..,Ks, > 0 is a monotonically increasing

S1+Ks,
function such that ¢g(S;) — p,,,, as S; — oo.

If s, Slf}(sl — aD > 0 then it can be proved that f(S5;) = O(g(S1)), i.e.,

V(S1) 3(c>0) such that [[f(S1)| < cllg(S)]l-

Sl Sl
0< —— —aD < R
= e 'g T = Pl g 70
Sl Sl
— 2t 4Dl <1- Pt
Hmas g R = ‘ Hmas' g TR,

= [[F (Sl < ellg(Sh)l
S

——F —aD|| < K.
/’leaz Sl + K81 —

—

If 11,0, 5 f;{sl —aD < 0 then X; — 0 and

Condition A shows that the norm

We define the lower-upper solution in inverse order with respect to the variable S; and
in direct order for X, as follows:

S
/’leaz S]_ _'_ KSl

—aDH X, < K.

S

——— —aD
/"leaz Sl + K51 H

is bounded.

Definition 5. [Lower-upper solution] A pair [(Xio, S1o), (XY, S0)] is called

(a) a lower-upper solution of problem (14), if the following conditions are satisfied

(X410, S10) € CH(1), (X7, 9)) € C'(1), tel

X1g — F(t, X10,51) <0 (lower) (15a)
X, —F(t,X%8)>0in I, VS, €[S Sw], (upper) (15b)
Sio — G(t, X1, S10) <0 (lower in inverse order)  (15¢)
S —G(t,X,8%) >0 in I, VX;€[X1, XY (upperin inverse order) (15d)
with
X10(0) < ¢ < X%0), S%0) <c¢; <Sip(0)  (initial conditions); (15e)
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(b) a lower-lower solution of problem (14), if the following conditions are satisfied

XlO - F(t,Xlo,Slo) S 0 in [,
S() - G(t,Xlo,Slo) S 0 in [J

with S?(O) S C1 S 310(0);
(¢) an upper-upper solution of problem (14), if the following conditions are satisfied

X0~ F(t,X0,8%) >0 in I,
SO — G(t, X989 >0 in I

with X10 S X{), S? S SIO in I.

Definition 6. The fUTLCtiOTLS (I)(t, tsh., Mimaz Ksl, D, Oé), @1@, tXh., D, Slin> ]{71, M1imaz Ksl)
are called semitrivial solutions of problem (14)

if ©(t,tsy;, imaz, Ks,, D, ) is a solution of the ODE:

. ts,.
X = max————— —aD | X 16
1 (Ml to +K51 o ) 1 ( )

and ®1(t,tx,,, D, Stin, k1, imaz, Ks,, ) is a solution of the following ODE:

. S,
Sy = D(Shim — 1) + kr fitmar — et 17
1 (S 1) + ki S+ Kg, X0 (17)

Here tg,,,i = 1,2,3 and tx,,,v = 1,2,3 are the indicators of semitrivial solutions
O(t,ts,,, Himazs Ks,, D, ) and O1(t,tx,,, D, Sin, k1, 1maz, Ks,) respectively, defined by the
following way:

[f Sl = Slm, then tsll = Slm,'

If Sy =59, then ts, =S is an upper solution of problem (17);

If S = Sho, then tg, = Sio is a lower solution of problem (17);

If X1 =0, then tx,, =0;

If X, = XY, then tx,, = XV is an upper solution of problem (16);

If Xy = Xyp, then tx,, = Xio is a lower solution of problem (16).

From Definition 6, we obtain different types of semitriviales solutions of system (14):

y Slin
X = maz—— —aD | Xy, 1

! (Ml Stin + Ksg, “ ) ! (18a)
Sy = D(Sy;, — S) (18b)

for (X1,S1) with ordering of lower and upper solution
Xio(t) <X70(t), SY(t) < S(t).

Theorem 2. Assume that condition A is fulfilled and there exists a pair (Xio,SY),
(X0, S10) of lower-upper solutions of (14). Then there exists at least a solution of
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semitrivial equations (16), (17) and there exists a solution (X1,S1) of system (14) such

that

Xio(t) < Xq(t) < XP(t),  tel o
SUt) < Si(t) < Sw(t),  tel (19)

Proof. Tt is divided into two steps. First, we consider a modified problem and show that
any solution of this problem is also a solution of the original problem and that it is between
X0 and X7, SY and Sig (reverse order) by means of differential inequalities. Second, a
direct application of the Banach fixed point theorem shows that equations (16), (17) for
the semitrivial solutions have at least one solution. Last result guarantees the existence of
solution (X1, S1) to system (14).

Step 1. Introduce the space

K = [X1, X7] x [SY, S10] € E = C(I) x C(I).
K is a bounded closed convex set in E. Now, given (X, S1), define the functions:
F(t, X))+ XY if XV <u,

f(Xl,Sl)(t7u> = F(t,U) +u if XlO S u S X{), (20)
F(t’ XIO)Xlo lf u < XlO;

G(
gixisn(t,v) =4 G(t,v) —wv if Sy <wv < S, (21)
G( ,510) — 510 if v> SlO~
(

Define the mapping 7' : K — E by T
respectively, of the modified problems

£,89) — S0 if 59>,
t

Xi,51) = (u,v), where u and v are the solutions,

u(0) = ¢4,
(LI) v (t) —v(t) = gexsn(tv(t),
U(O) = Cy

c
that and reduced to (14), when (t,u(t)) x (t,v(t)) € E. We claim that any solution u of
Eq. (I) is such that Xjo(t) < u(t) < X?(¢) for all t € I, so that it is also a solution of
(14a).

We shall prove that u(t) < XP(¢) for all ¢ € I. The proof of the other inequality is
similar.

If u is a solution of (I), then, by (20), for some ¢ € I such that (u — X?)(¢) > 0, one
has

u'(t) = F(t, X9) + u(t) — X0 > X?

so that
(u—XP)(t) >0

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 61
u nporpammupoBanues (Becruuk FOYpI'Y MMII). 2015. T. 8, Ne 2. C. 55-68



M.M. Higuera, A.V. Sinitsyn

for some ¢ € I such that (u — X?)(¢) > 0. Therefore u(t) > X? for all ¢ € I, but this
can not happen because it contradicts the definition of upper solution u(t) < X?. Hence,
there exists ¢; € I such that (u — XV)(¢;) < 0.

We shall prove that v(t) > S9(¢) for all ¢ € I. The proof of the other inequality is
similar.
If v is a solution of (IT), then, by (21), for some t € I such that (v — Sy)(¢) < 0, one
has
v'(t) = G(t, S%) +u(t) + SY < SY

so that
(v — S?)’(t) <0

for some ¢ € I such that (v — SY)(t) < 0. Therefore v(t) < SY for all ¢ € I, but this can
not happen because it contradicts the definition v(¢) > SY. Hence, there exists ¢, € I such
that (v — SY)(ts) > 0.

Step 2. Consider equations (16), (17) for semitrivial solutions. Apply the Banach fixed
point theorem as following;:

Define Ty : C(I) — C(I) by

t SO(S)
Tleg(t) =C —|—/0v {Mlmazm — OZD:| Xlo(S)dS, X10 € C([)

If ||X10H S M1 then
SO

11 X100 — T XT,| < ' /leazm — @DH 1 X100 — X{oll-
1 1
The norm is bounded due to condition A
St
—— —aD|| <K

SO
’Tleo — TlXik()’ S K1HX10 — XikOH fOI' every Kl > 0.

Now define Ty : C(I) — C(I) by

: Si(s)
0/4) . P 0 0
T2X1 (t) . Cl + A {/’leam S:(l](s) + KSI O[D:| Xl (S)ds, Xl E O(_[)

If | XY < M, then

SO

TX) — T X | < L
|2 1 2 1|—'/’L1maa:5§]+KSI

- aDH X0 - XV).
The norm is bounded due to condition A

IT,X0 — T XY < K| X — X7

for every K; > 0.
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Consequently 7,7, are contractive mappings from {Xi, X? € C(I), || Xl < M,
| X?Y|| < My} for every My > 1 and for every M, > 1. Then T; and T5 have a unique fixed
point in C'(I).

Similarly, define T5 : C(I) — C(I) by
¢

T389(t) == ¢y +/ {D (Slm — S?(s)) — klulmmﬁ% Xlo(s)} S%(s)ds, S e C(I).

0

If ||| < N, then

* 1 *
1 1
Estimate the norm
E1 b s S?
D (Syy — SY) — =L mes 71 22

As [ Xl < My, V 87,57 € C(I)

ki py,,.. S? o ki, SY
D(Slm—S?)—WXm— (D(Slm—S?)—golWXm —

=D(SY - S +k St S X
= 1 1 1 Mlmas S?* I K51 S? T K51 10

then

D(SY — 89 + ky g S — 5 X1o
! ! e (S?* +KS1)(SO+KS1)

SO
) NCI
1
(510* =+ KSI)(S](.) + KSI)

1
(S + Kg,)(SY" + Kg,)
as SY,5Y" > 0 and the constant Kg, > 0. Then h(S?) < 1, hence ||h(S?)|| < K3 so one has

< ID(SY" = SV + k1

M|M—

=wmﬁ—ﬂwumMmﬂ‘ 159 — SOlXoll

Now estimate the norm

50— g0
(S?* + KSI)(S](.) + KSI)

taking

h(SY) =

D(SO* — SO) + k‘l M1 S?* - S? XlO
! ! e (S?* +KS1)(S?+KS1)

1
(S?* +K51)(S?+K51)
< (| D]+ [k1p1,ae K2 M |) [|1S7 = SV < (K3 = max{| D], [k1pna

gwaﬂ%wﬂmMWWI 157~ SOlIXo] <

KoMy h)||1SY = SYl.

max
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Then [|T35Y — 13507 || < K389 — SV

, for every K3 > 0.

Now define T : C'(I) — C(I) by

¢ Sio(s
T4Sl(](t) = Cg—i-/() |:D (Slm - Sw(S)) — kl Mlmaz#:_)[(& Xlo(S):| 510(8>d8, 510 S C(I)
If HSlOH S N2 then
1
TyS0 — TuS* | < | DSy,,, — | D+ k — X — 57l
|T4S10 1570] < H Stin [ + K1 mas Sio+ K, 10] S1ol| 1510 — STl
Estimate the norm
ki Sio
D (Syp, — Syp) — ——=— 23
|2 (5 = s10) = Eftzee P 23

AS ||X10|| S Ml, V Slo,SikO S C(I)

k S k S
D (Syin — Si0) — 1 Hlmaz P10 X0 — (D (Shin — Sy) — 1 Hlmaz P10 Xw) —

510 + K51 STO -+ K51
— D(Sfo — S10) + k1 ., ( " S0 — S10 > Xio0
B SIO+K51 510+K5'1
then
ST — Sio
D(S* — Sio) + k 10 )X <
H (Sio = 510) K1 f11e <<Sro+Ksl><sm+Ksl> 1
* 5
< ID(S5 = Sil + I e || i | 1ol =
10 1 1
1

= || D(STo — Swo)ll + k1 11,0, | H

S7o — S1ol||| X10]|-
e | 150~ SullXul

1
(S10 + Ks,) (St + Ks,)

As Sy0, 57, > 0 and the constant Kg, > 0 then h(Syy) < 1, then ||h(S1)]] < K4. So one
has

Now estimate the norm

[Exsaen
(St + Ks,) (S0 + Ks,)

taking
h(Slo) —

. STo — Sio
D(Sio = S10) ki ft11 ((Si“o TR (S ¥ Ksn) 1o

1
‘ (STO + KSl)(SIO + KS1)
< ([ D]+ k1 100 Ka M) |[STo — Stoll < (K5 = max{[ D], |k1p1,,,,, KaM1|})[|STo — Stoll-

< ID(STo = S10)ll + k1 s, |

\ 15 = Stoll| Xoll <

So HT4810 — T4STOH < K5”Slg — STOH for every K5 > 0.
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Consequently Ts,T; are contractive mappings from {SY, Sy € C(I), ||S?| < Ny,
|S10|| < No} for every N7 > 1 and for every Ny > 1. Then T3 and T have a unique fixed
point in C(I).

We have proved that every mapping of T, Ty, T3, Ty has a unique fixed point in C(1),
this guarantees the existence of solutions Sig, Sy, X19, X?. This is sufficient to guarantee
the existence of solutions X; and S; such that Xjp < X; < XV and S < 5; < Sy.

O

1.2. Semitrivial Solutions S; and X;

Consider in system (14) the trivial solution E; (0, S1;,) defined by (13) and search an
analytical solution of linear equation (15d)
dS;
— — D(Sy;, — S1) =0,
dt (51 1
Sl = Slm - [Slm - 51(0)] exp(—Dt). (24)

When Sy, > S1(0) a graph of solution at t — oo asymptotically decreases to a value Sy;,.
And for Sy, < S1(0) a graph of solution at ¢ — oo asymptotically increases to a value
Stin. However, we wish to demonstrate the method of upper and lower solutions. We take
€ > 0, consider let the solution

Sl = Slm — [Slzn — 51(0)] exp(—Dt) + €.

Thus s
1

— — D(Suin — > 0.

p (S1 S1) >0

D(Sh‘n — Sl) exp(—Dt) — D(Slm - Sl> exp(—Dt) + De Z 0.

Then De > 0 for D > 0 and solution S; = SY is a upper solution of (18b). If € < 0, then
S1o is a lower solution of (18b).

—— Upper s‘: =S, ~[S,, = S,0)]exp(-Dt) + ¢
= = = Numeric solution
Lower S = S{ (when £<0)

5 10 15 20 2 20

Fig. 1. Tending of a graph to Sy, as t — oco. The parameters for simulation from [2]

Fig. 1 shows that the solution tends to the value Sy;, as ¢ — oo. In the process, this
represents that bacteria feed on the substrate S; over time.
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Table
The solution to S

Parameter | Value| Units | SD
S1(0) 5 [g/1]
D 0,395 [d’l] 0,135

Now we look for a semi-trivial upper-solution X? for equations (15b) and (24). From
Definition 5
X, - S—? —aD ) X?>0
1 Mlmaa}S? +KS‘1 1 = U
Taking (16) and (24) in (15b), with cg = S1;, — S1(0) we obtain

-0 Stin — €3 exp(—Dt) 0
— X; - ma —aD)] X;i"=0
! (Ml Slm — Cg exp(—Dt) + K51 @ !
then
Nlmazslin
—Dt) (51 + Kg, — —Dt))]PSuintEsy)
X7 = co % 05 P (= D%) (Sun + K5, — cs oxp Nlrr?a)j — woxp(~a D 1)

[S1in + Kg, — csexp(—Dt)] ©

and a graphic representation is Fig. 2 shows that the upper solution X presents condition
washout.

Fig. 2. The graph of the solution X; tending to 0 as t — oo. The parameter values are
taken from Table, with initial condition X;(0) = 0,5

Conclusions

In this paper we presented a study of existence of lower and upper solutions of a system
of ordinary differential equations modelling acidogenic stage process of AD. Inverse order of
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lower and upper solutions with respect to variables was considered. We are well aware that
this is only the first step in the complete study of the problem. The next step is to consider
the V.M. Matrosov comparison principle to explore the global stability of solutions and a
complete study of bifurcation (here readers may refer to monographs [8, 9]).

The first author is partially supported by SNI-CONACYT and thanks the University

of Ibague in Colombia for their support and also thanks to the doctoral program in
mathematics at the Faculty of Mathematics at the University of Veracruz in Mexico.
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CYIIIECTBOBAHUE HI>KHUX 11 BEPXHIX PEITEHUI
B OBPATHOM ITOPA/JKE ITIO OTHOIITEHWIO

K IEPEMEHHON B MOJEJIN AITUJTOTEHE3A

HJId AHASPOBHOI'O CBbPAKNBAHIN A

M.M. Hzesppa, A.B. Cunuyun

JlokazaHo CYIECTBOBAHME BEPXHUX W HUIKHUX PEIIEHNH B OTHOCUTENHLHO YACTH Tepe-
MEHHBIX B CUCTEME HEJMHEHHBIX OOBIKHOBEHHBIX Mu(DEepeHIMaNbHBIX YPaBHEHU, MOIETH-
PYIOIUX alMI0reHe3 B aHAIPOOHOM COpPaKWBAHWY B 33/1a9€ METAHOOOpa3oBaHus. Bepxaue
¥ HUXKHUE PEIIeHUs CTPOATCS aHAJIUTUYECKH, U YCTAHOBJIEHBI COOTBETCTBYIOIINE TEOPEMBbI
CYIIIeCTBOBAHUS.
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