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Analysis of complex hydraulic networks, electric circuits, electronic schemes, chemical
processes etc. often results in a system of interconnected differential and algebraic equations.
If the process under study has after-effect, then the system includes integral equations.
This paper addresses simulation of hydraulic networks by means of the theory for singular
systems of integral differential equations. We present theoretical tools that help investigate
qualitative properties of such systems and search for effective methods of solution. A
mathematical model for the straight through boiler circuit has been developed and a
numerical method for its solution has been constructed. Experimental results showed that
the theory for singular systems of integral differential equations performs well when applied
to simulation of the hydraulic networks.

Keywords: differential-algebraic equations; inlegral-algebraic equations; hydraulic
network; hydraulic circuit; index; numerical methods.

Introduction

Consider systems of ordinary differential equations
Ai + F(z,t,v) =0, t € I, = (—o0,+00), (1)

where A is a (¢ X p)-matrix with constant components, F(z,t,v) is an n-dimensional
vector-function, © = z(t) is a desired vector-function, v € X = (—1y,14) is a numeric
variable. For the sake of simplicity, it is assumed that F(x,t,v) € C°(R2 x I; x V) and

det A= 0. (2)

Systems (1) satisfying (2) are commonly called differential algebraic equations (DAEs) [1],
other frequently used terms include singular systems [2| and algebraic differential systems
[3]. Such systems appear in many applications, for example, in electronic schemes, electric
and hydraulic networks, mechanical systems etc. [1-5|. In the works [6-8], systems (1),
describing various substantial problems (A is a non null-kernel operator), have been studied
in infinite-dimensional spaces.

By the solution of system (1) for a fixed value of v = v, on T = (o, ) C I; we mean
the vector-function = = z(t) € C!(T') which reduces (1) into identity on 7.

Here and in what follows, we use the uniform norm of the m-dimensional vector b € R?
and the corresponding norm of the (o X g)-matrix B = {bij, i,j = m} which are found by
the rules ||b]| = max {|b;| i =1,2,...,0}, b= (b1,ba,....,0,)", | B|| = max{>_7_, |b;],i =
1,2,...,0}, where T stands for conjugation.

It is important to mention that dependence on ¢ sometimes might be omitted if it does
not lead to misunderstanding.
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1. Mathematical Models for Hydraulic Networks

A hydraulic network is a system comprising an interconnected set of discrete
components that transport media (such as gas, liquid or a mixture of gas and liquid).
The network usually comprises the following components: active components (hydraulic
power pack, e.g. pumps), transmission lines (e.g. pipes) and passive components (hydraulic
cylinders). Its scheme can be presented in the form of a finite oriented graph with
explanatory statements if required. The number of nodes n and the number of lines m are
said to be the parameters of the hydraulic network under study.

The hydraulic network graph can be presented by a full (m x n)-matrix A of nodes and
lines that identically describes the structure and the orientation of the network: a;; = 1,
if the line i comes from the node j; a;; = —1, if the line 7 comes into node j; a;; = 0 if
the node j does not belong to the line 7. The finite closed set of the oriented lines, where
only the start and the end nodes coincide, is called a simple circuit. We say that the line
is active if it connects nodes of active components, otherwise we call this line passive [9].

The matrix of nodes and lines should be considered along with the (I x n)-matrix B of
the network circuits which describes the basic system of circuits and lines: b;; = 1, if the
line 7 belongs to the circuit and its orientation coincide with the direction of the circuit,
otherwise b;; = —1; b;; = 0 if the line 7 does not belong to the circuit.

Introduce the following vector-functions: X () = <a:1(t) xo(t) ... a:n(t)>T is the flow
rate in pipelines; P(t) = <p1(t) pa(t) ... pl(t))T denotes pressures at nodes; y;(t) = p;(t) —
pit1(t) is a pressure drop in the i-th pipeline; P*(t) = (p;‘+1(t) Pio(t) ... pfn(zf)>T denotes
the known pressures; H(t) = (ﬁl(t) ho(t) ... /~1n(t)>T is the hydraulic heads in pipelines;
Q(t) = <q1 (t) qa(t) - .. qm(t)>T is the inflows (outflows) at nodes; h(t) = yi(t) + hi(t) is a

pressure loss in the i-th line due to friction, y;(t) = h;(t) for a passive line.
Here we establish two Kirchhoft’s laws:

AX(t) = Q(t), BY(t) =0, (3)
where Y () is a vector-function of the pressure drops in pipelines. The first law reflects

the fact that for any node j the inflow equals to the outflow: > z;(¢) = ¢;(t), >_ qi(t) = 0.
' i=1

j

The second law implies that in any closed circuit ¢ the total pressure drop equals to

zero: »_ y;(t) = 0. In system (3), the number of variables is greater than the number of
q

equations. To amend this, it is common to use so called closing relations which describe
the movement of the media along the pipelines:

Yi(t) + hi(t) = seiwi(t) + s122(t), s0i >0, s3>0, (4)

where so;, $1; are the pipe frictions corresponding to the stream-line and turbulent flows [9].
After some obvious transformations, we arrive at the closed system of nonlinear equations

(S 20) (3o (sIxoy (a0 Ar0) g
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where |X ()| X(t) = diag{z1(t)|z1(t)|, z2(t)|z2(t)], ..., 20 (t)|x.(t)|}, Q1(t) is a vector-
function of inflows at the nodes with unknown pressures, Sy = diag{so1, So2, - - - Son}
and S; = diag{si1,s12,...,81}, (A Aj) = AT, the matrix A; is full rank. If we
find H(t), P*(t), Q1(t) at a given time ¢t and solve (5) by Newton’s method, we obtain
distribution for the flows X (¢) and the pressures P(t).

Notice that the pipe frictions may depend on X(t), P(t) [10,11]. In the works by
A.P. Merenkov, it was proposed to replace 7 (t) by |z;(t)|z;(t) in (4). This enables us to
carry computations when y;(t) +h;(t) alternates in signs. For example, set so; = 0, [y;(t) +
hi(t)] < 0. Then (4) does not have a real solution with respect to x;, whereupon system
yi(t) + hi(t) = suilxi(t)|xi(t) does.

In the monograph [5], the following closing relations were obtained by integrating
over the space of the general motion equations: y;(t) + h;(t) = r;(t)2;(t) + soizi(t) +
suzi(t), ri(t) > k = const > 0, t € I;, i = 1,n. In accordance with the technique
developed by A.P. Merenkov, we replace this with

Yi(t) + ha(t) = ri(t)a(t) + soiwi(t) + suilas(8)]as(t), (6)

which corresponds to the DAE
(5 ) (3 )+ (3 = ) (Rl )+ (59 ) -

( ATP*( ) ) 7 (7)

where R(t) = diag{ri(t),ro(t),...,m,(t)} are the momentum parameters that depend on
the geometric features of the given part of the circuit. Some pipelines may have regulator
components and, therefore, taking into account (6), the line equation has the form

t

Yi(t) + hi(t) = ri(t)@i(t) + soiwi(t) + [s1: + ks /(%(931'(7)) — 0;)dr]z(t) |2:(1)] (8)

0

where k; is a proportionality factor, 6; is a value for the regulator component, ;(.) is the
regulator function.

Hence, taking into account (8), system (7) with automatic regulator components can
be presented in the form of a singular vector-valued integral differential equation

W(y) == RO+ U(y, Vg, 1) =0, t €T = [, 5] C [0, o0) (9)
t

where y = (XT PT)T = [K(t,7,y(7))dr is the Volterra operator, R(t) =
0

diag(R(t),0).

Example 1. Consider the straight-through boiler circuit (see Fig. 1). Along the circuit,
the water is pumped at node 5, then it is heated and turns into steam. Afterwards, the
steam is heated to 545°C' and passes to the turbine through the valve. It is shown on Fig.
1 that the circuit has 6 segments: x1, x9, T3, T4, Ts5, T6. Water flows through the segments
x1,x3 which also have regulators for the feed water and the live steam temperature. The
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Fig 1. Diagram for the straight-through boiler circuit

segment x5 has the water-steam mixture coming through it, whereas steam passes through
x4 and zg. The control valve of the turbine is located at z5. The inflow ¢(t) simulates the
media density variation at the boiling segment.

Write down the flow rate equations using the first Kirchhoff’s law for the nodes

P1, 2,3, p4 (Fig. 1):
X1 — X9 — 13 = 0; To+ a3 — 24 =¢q; x4 —x5=0; T5 — 26 = 0. (10)

The pressure loss equations have the form

t

P:—p1 = 1d1 + [s11+ K1 /(%(T)—&)dﬂ \z1|z1; k1 = 0,003, p1 —pa = Tody + S12 |T2| T2;
0

t

p1 — D2 =T33+ [S13 + K3 /(375(7) — 03)dr] |z3] x3;
0

k3 = 0,001, po — p3 = r3ds + s14|Ta| 24/ (P2 + p3);
P3 — P4 = r5@5 + S15 |T5| 5/ (pa — 0,09p3); pa — PG = T6d6 + S16 |Te| T6/(pg + pa).  (11)

In (7) we have:

~10 0 0 10
1 -1 0 0 0 0
e I T + oo
A=lo 1 1o [P 2T oo
0 0 1 -1 0 0
0o 0 0 1 0 —1

Values for the regulators are set: 6y = 75, 63 = 9. The flow rate is measured in kilograms
per second, pressure is measured in units of atmosphere, time is measured in seconds.
2. Basic Definitions

Before we start to analyse the system obtained, let us introduce the essential for the
future investigation notation.
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Definition 1. Let
Ai(z) = Ad + §(z,t) =0, P(x,t) = F(x,t,v,), t € I} = (—00, +00), (12)

where ®(x,t) € Cgi’m(R@ X Iy), ve € N = (—vp,10) is a fized value of the parameter, and,
as in [12], the following conditions hold:
1. All solutions x(t;tg; xo), where g € M, M C R? is some mapping, are defined when
to <t < oo
2. There exists a unique solution n(t), t € I bounded along the entire real axis:
sup{|In(t) .t € L} = p < oo;
3. For each solution x(t;to; xo), limy_eo [2(£;t0; o) — n(t)] = 0.

Then, system (12) possesses the convergence property.

By combining definitions from |2,3,13|, introduce the following notion and a statement.

Definition 2. 1. The sum MA + B, where A, B are matrices of the equal dimensions, \
is a scalar (generally, complex) parameter, is called a matriz pencil;

2. The pencil of (0 X 0)-matrices NA+ B is reqular if there exists a value for the parameter
Ao such that det(A\A + B) # 0;

3. The smallest possible integer positive number k, starting with which

rankWW* = rankW**1, W = (A + B)'A4], (13)

is called an index of the matriz pencil N\A + B;
4. The reqular matriz pencil AA + B is said to satisfy the rank-degree criterion if
deg det [AA + B] = rankA = r.

Lemma 1. If the pencil of square matrices NA + B is reqular, then there exist such
matrices P and ) with constant components that

P(/\A+B)Q:/\<%’ ]‘3[>+(67 E§d>

where N is a nilpotent matriz (i.e. for some j >k, N7 =0).

DAEs possess a complex inner structure. To measure this complexity to some extent,
it is common to use the notation of index. Various definitions of index can be found in
literature (see, e.g., [1], [3], [14]), however, below we use the definition from [14].

Definition 3. Let  there exists a  differential  operator  N(z) =
Zé‘:o Li(t,z,...,209)(d/dt)?, where L; € C(T x Re=2) are (o x p)-matrices
with the property N(z) o Ai(y) = A(z,t)2 + ®(2,t) V2 = 2(t) € CHYT), where
det A(v,t) # 0 V(v,t) € R? x T. The smallest possible | is said to be the index of system
(12) on T. When | — 2 < 0, matrices L; do not depend on t and z.

For the time-invariant system (12)
Ai(t) + Ba(t) = £(2), (14)

where the pencil of square matrices AA + B is regular and f(t) is a known vector-function,
l
we can assume, by means of Lemma 1, A; = Qdiag{Ey, > (—N)(d/dt)’*'}P. In other
=0
words, [ = k, i.e. the index equals to the parameter from (13).
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Definition 4. Let there exist an integral differential operator
Ai(z) =) Ljt,z,....2" 2 V. Vi, Vi) (d/dty,

where L; € C(T x Re®2)) are (0 x o)-matrices, V; are the Volterra operators with
the property Aj(z) o W(2) = R(2,t,V,V1,...,Vi2)Z + ¥ (2, t,V, V1,... Vi) V2 = 2(t) €
CHYT), where det R(v,t,w,wy, ..., wi_s) # 0 Y(v,t,w, w1, ...,w;_g) € R"=2 x T). The

smallest possible | is called the index of system (9) on T. If | —2 < 0, the matrices L;
t

depend only on t. In some cases it is safe to assume V;z = [[0 K (t,7,y(7))/0t]dT.
0

3. Linear DAEs with the Convergence Property

Lemma 2. If system (12) possesses the property of convergence and ®(x,t) = ®(z,t+w),
then the bounded solution n(t) is also w-periodic with respect to t.

Proof. Indeed, let ®(z,t) = ®(z,t + w). We have A(d/dt)n(t +w) = An(t +w) = d(n(t +
w),t+w) = ®(n(t +w),t). Therefore, n(t + w) is a bounded solution on I;. By definition,
n(t) is unique. Hence, n(t + w) = n(t).

(I
Theorem 1. Let system (14) satisfy the conditions:
1. The matrixz pencil NA + B is reqular;
2. f(t) € CHL), | fO)|| < 5, & =const >0, j=0,k—1, fO(t) = f(t), where k is
the index of NA + B;
3. All roots of the polynomial det(ANA + B) have negative real parts.
Then, system (14) possesses the convergence property and

t

o0 =Y 5590+ [ Gie=nsryan (15

Here G1(v), S are some (o X p)-matrices defined below.

Proof. Multiply system (14) on the left by P and introduce the change of variables z = Qvy,

where P and () are the matrices from Lemma 1. We obtain

( %l ](37 )?H ( ‘é Ego_d )yz ft) = ( szgg ),f(t) = Pf(1). (16)

Introduce the splitting y = (v, , v, ). Consider the first subsystem of (16) 9, +Jy; = f1().
In accordance with [12], under condition 3 of the theorem all real numbers of the matrix
J are negative and the unique bounded solution of the first subsystem is defined by the

formula
t

yi(t) = /B_J(t_T)fl(T)dT.

—00
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For the second subsystem Nyo + y2 = fo(t), a simple substitution verifies that

e

-1

ya(t) = folt) + D (=N f(2).

.
Il
—

Then, G1(v) = Qdiag {e~/*,0} P; S; = Qdiag {0, (—N)’}.

Similarly, we can prove a more general statement using (16).

Theorem 2. Let system (14) satisfy conditions 1 and 2 of Lemma 3 and all roots of the
polynomial det(AA + B) have non-zero real parts.

Then, there ezists some matriz G(t) € C*(0 < |t| < oo) with the properties:

1. G(+0) — G(=0) = M, where M is a (o X o)-matriz defined below;

2. |G@)|| < ce™@M, (t £ 0), where ¢ and a are positive constants;

3. AG(t) + BG(t) = 0, t #0;

4. The expression
—+00

0= 5,0+ [ at-nser )

is a unique bounded solution of (14) on I.

Lemma 3. For the bounded solution n(t) of system (14) under the conditions of Theorems
1 and 2, the following estimation holds

k—1
sup [|n(t)]| < %Sgpz D), &= const > 0.
7=0

If the free term f(t) of (14) is an w-periodic function f(t +w) = f(t)(w > 0), then
the bounded solution 1(t) is also w-periodic.

4. Quasilinear DAEs with the Convergence Property

Definition 5. (see, e.q., [2]) The (o1 x o)-matriz A~ is said to be semi-inverse for the
(0 X p1)-matriz A if AA—A = A.

The semi-inverse matrix is defined for any (o X o;)-matrix A and techniques for its
computation are well developed [2].

Lemma 4. [17] Let:

1. In system (1) F(z,t,v) = F(x);

2. F(z) € C}3U), U= {x: ||z —al < p}, where a € R? and F(a) = 0;

3. The matriz pencil \A+ F,(a), where F, = OF (x)/0x, satisfies the rank-degree criterion.
Then, the first v roots of the polynomial det [NE, — OF(a)/0x] are equal to the roots of
det [NA + F.(a)], and the rest o — 1 roots are equal to -1, where

F(z) = —[A+ SF,(z)] " F(z),S = E, — AA".
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Lemma 5. Let in system (12) ®(z,t) € Cg’z)(Rg x I;). Then, system (12) has index
1 if det N+ O (z, )] = ap(z, )N + ..., where r = rankA, &, = 0¥/(x,t)0x, and
ar(z,t) # 0 V(z,t) € Re x L.

Proof. Consider the equality

P[A+ SP7'P2,(Qy,t)] Qy+ P2(Qy,t) + PP, (Qy,t) =0,

where &, = 00 /0t,x = Qy, PAQ = diag {E,,0} ,det(PQ) # 0. It is clear that

E, 0 B L
o ( Bi(y.t) Bai(y.t) ) = det P [A+ SP7P®,(Qy, )] Q,

where ( gzgz:g g;zgg:g ) = P®,(Qy,t)Q. Since the matrix S = E, — AA™ is a

projector: S? = S, then, by the definition for a semi-inverse matrix, we can choose
such P that PSQ = diag {0, E,_,}. Tt follows that a,(z,t) = det By (Q 'z, t)/ det(PQ).
Therefore, by applying E, + S(d/dt) to (12) and multiplying by [A + S®,(z,t)]”", we
obtain a system in the normal form

b= Fa,t) = — [A+ SO, (x, )] [®(x, t) + Byl )] (18)

O
Theorem 3. Let system (18) satisfy the conditions:
1. sup{F(0,t), t € I} = k < 00;
2. The biggest eigenvalue Ayax(x,t) of the matriz [Fy(z,t) + F (z,t)] /2, Fp(z,t) =
OF/(x,t)0x is such that Apax(z,t) < €, where € is a positive number.
Then, system (18) possesses the convergence property.

Proof. System (18) satisfies that conditions of the theorem from [12]. Therefore, it has a

unique bounded solution 7(t) that attracts all solutions xz(¢;tp; xo) of system (18). Since
all solutions of (12) are the solutions to (18), they are also attracted to n(t). The set M
from Definition 1 is defined by rankA = rank(A|F(zg,tp)) and, in virtue of a,(z,t) =
det By (Q 'z, t)/ det(PQ) # 0, is nonempty.
O
Let us give an auxiliary statement from [17| for a nonlinear system with a distinguished
linear part.

Theorem 4. Let there be given a system
Adlt) + Ba(t) = 6(t, ) (19)

and the following conditions be satisfied:

1. The matriz pencil NA + B satisfies the rank-degree criterion;

2. All roots A\, A, ..., N\ of the polynomial det(AA + B) have nonzero real parts;

3. ¢(t,y) € CH(Ie x ||yl < 00) u sup; [|¢(t,0)|| = v < oo;

4. The Lipschitz condition holds: ||o(t,y) — &(t,2)|| < L|ly — z||Vy,z € Re, and L is
sufficiently small.

Then:
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1. There exists a solution n = n(t) to (19), defined and bounded on I, and n(t) = n(t +w)

if p(z,t) = ¢z, 1+ w);
2. System (19) possesses the convergence property if ReA; < 0,(j =1,...,7).

Theorems similar to Theorems 1, 2, 4 for the infinite-dimensional case can be found
in [18,19].
5. Investigation of the Hydraulic Circuit. Numerical Experiment
Let us establish some qualitative properties of system (7).
Lemma 6. System (7) has index 2 if the matriz S does not depend on the components

of P(t).

Proof. Consider the product

o= (5 D) (5) (7Y ) (3):

) ( RS K01 X(0) ) v ( . ) | 20)

where (X, P) is an operator of system (7). If S in (7) does not depend on P, then,

. B E, 0
transforming (20) by means of the operator Y> = —(dJdt) Ay (d)db)E,, ), we get

YooYy ofe,p) = ( ﬁE(;) AlR—?(t)AlT ) ( )Ji ) A

where U(z) is some block of appropriate dimension. The matrix A; is full rank if the
matrix R~1(¢) is diagonal with positive elements. Therefore, A; R71(¢).A] is nonsingular
for all t € T'. The product Y5 o Y] is the second order differential operator.

Below, we will need the following statement. -
Theorem 5. Let the system
St)y+T(y,Wy,t) =0, t €T = o, B], (21)
where Wy = ft K(t,7,y(7))dr is the Volterra operator, satisfy the conditions:
18() € CT). T(.4.2) € C({y : a— ] < pi} x (= ¢ 2] < pu ¥ T proga > 0),

LT Kl € CUEAT x s o —all < b

2. rank S(t) = const, t € [a, a + p1];

3. rank S(a) = rank {S(«)|I'(a,0,a)};

4. The polynomial \S(«) +D(a, 0, «), where D(y, z,t) = OI'(y, z,t) /0y, satisfies the rank-
degree criterion.

Then:

1. the solution y(t) € Ca, o + €] to system (21) with the initial data y(a) = a is defined
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on some segment [, o + €|, € > 0;
2. For the sufficiently small h < hg, there exist solutions to the difference scheme

N (ty Ry K(, ej,y») =0, y=ua. (22)

Jj=0

where h = €/N, tiy1 = a+ih, i =0,N =1, 7; = a+ jh, and the following estimation
holds:
lyi — y(t;)]]| < Ch, C = const > 0.

More over, (22) can be replaced by the non-iterative scheme

S(tiﬂ)w+F(fi)+D(fi)(wi+1 —w;) =0, &= (tiJrlawi; hzk(tjaijwj> , (23)

=0
with the estimation ||w; — y(t;)|| < C1h, Cy = const > 0.
Theorem 5 is a special case of statements proved earlier in [20].

Lemma 7. Let system (7) H(t) =0, P*(t) =0, Qi(t) =0, t € I, have no requlator
components. Then (7) possesses the convergence property.

Proof. Define the set M from Definition 1. It is clear that under the current conditions
A1 X (t) = 0. Moreover, system (7) does not satisfy the forth condition of Theorem 5,
meanwhile, system Y; o Q(X, P) = 0 does. By direct calculation, it can be shown that
det]A\S(a) + D(a,0,a)] = [A;R7'(¢)A]]A" + -+, and the forth condition is satisfied for
all values of ¢t. To satisfy the condition 3, it is necessary and sufficient that the following
equality holds at the point ¢,

[ARTH(O)A[]P(E) = —ALRTH(1)S1 [ X (1) X (8). (24)

The set of solutions to A; X (ty) = 0 is nonempty. Since the matrix A;R71(t)A] is
nonsingular, for any X (ty) = 0 there exists an allowable initial value P(ty) = 0. Hence,
the set M is nonempty, and, by virtue of Theorem 5, there exists a neighbourhood of ¢,

where the solution to (7) is defined for allowable initial values.

Let y(t) = ( )P(((f)) ) be a solution to (7). Consider the inner product

n

d n
(y,Q(X, P)) = (1/2) ; Ti@)a[x?(t)] + ; [s0.427(t) + s127(t) (1)) = 0. (25)
Here, we took into consideration that R(t) is diagonal and —(X, A{ P) + (P, A, X) = 0.
Assume that (7) has a nonzero bounded solution 7(t) defined on I;. Equation (25) implies
that for any nonzero solution

- d

> rlt) ()] < 0. (26)

— dt
Therefore, when t — —oo we have ||n(t)|] — oco. We arrived at a contradiction. The
nonzero solution is a unique bounded solution on I;. The validity of the lemma follows
from (24) and (26).
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O
Let us now present results of numerical experiments. It follows from (23) that

wirr = M7Y(&)|[S(tiv1) + hD(&)]wi — hF(&')]» where M(§;) = S(tiv1) + hD(&).

The forth condition of Theorem 5 implies that matrix M () is invertible for the

sufficiently small h. In Example 1, set §; = 75, 03 = 9, R = diag{1;1;1;1;1;1},

Xo = ($1o;$20;---,$60>T = (65;45;20;65;65;65)T7 Pt = (pg;pZ)T = (200;0,035)T7

Py = (p10; P20; Pso; Pao) | = (185517051605 120) T, ¢(t) =0,

So = 0,57 = diag {s11; S12; - - - ; S16} = diag {0,0005; 0,0014; 0, 0444; 0, 1825; 0, 4508; 0, 3336 }.
In scheme (23), we set h = 0,001; ¢ € [0..50].

S0 T T T

¥l
#2
w3
ptt
—¥5

80 : : i

Xt

0 1o 20 a0 40 a0

Fig 2. Diagram for the flow rates in pipelines with regulators

Fig. 2 shows that the regulators brought the flow rates to the given values.
This work has been supported by the Russian Foundation for Basic Research, grant
No. 15-01-03228-a.
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YK 519.711.3 DOI: 10.14529/mmp160105

M CCJIEJIOBAHUE MOJEJIE HECTAIIMOHAPHBIX
TUIPABJIMYECKUX TIETIEN HA OCHOBE
TEOPUN BBLIPOYKJIEHHBIX CUCTEM
NHTETPO-IN®PEPEHIINAJIBHBLIX YPABHEHUI

E.B. Yucmaxosa, Heyen Jvix Bane

AHaIu3 CI0KHBIX TUAPABANYECKUX CUCTEM, JIEKTPUIECKUX Leleli, 3JeKTPOHHBIX CXEM,
XUMAYECKUX PEAKIUuil U T.J. 9aCTO IPUBOAUT K HEOOXOIMMOCTH PEMIATH CUCTEMBI B3AWMO-
CBA3aHHBIX andbepeHIna bHbIX U adarebpantdeckux ypasuenuit. Ecim mporecc obmazaer
MOCAeNedCTBHEM, TO TAKWe CHCTEMBI MOTYT BKJIIOYATh WHTErpaJibHbie ypaBHenus. Jlannas
paboTa IOCBsIEHa MOIAEJIMPOBAHUIO TMIPABIMYECKHX LENeidl ¢ IOMOLIbI BBIPOXKIEHHBIX
uHTErpo-muddepeHuaibHbIiX ypaBuenuii. [IpuBoasiTcs TeopeTnyeckKue pe3yabTaThl, C MO-
MOIIBI0 KOTOPBIX U3YYAITCS KAYECTBEHHBIE CBONCTBA PACCMATPUBAEMBIX CHCTEM U CTPO-
arca 3pPpeKTUBHbIE YUCAEHHBIE METOAbI. B pabore paccMOTpeHa MOIETb THAPABINIECKOIT
IETN TAPOBOISHOTO TPAKTA, TPAMOTOYHOTO KOTJIA, IPEIJIOXKEH UUCIEHHBI METO PEITIEHUS .
OKCIEPUMEHTAIbHBIE PE3YIbTATHI HOKA3AIM, YTO TEOPHUS BHIPOKIEHHBIX CUCTEM HHTErpo-
b epeHInaThbHBIX YPABHEHUH XOPOIIO PAb0TAET TIPU MOAEJTUPOBAHUY TPOIIECCOB, TTPOTE-
KaIIAX B THAPABJINIECKUX CACTEMAaX.

Keywords:  dugppepenyuarvro-arzebpanueckue ypasrenusa; UHmMezpo-aazedpaudeckue
YPABHEHUA; 2UOPABAUMECKUL UENU; UHOEKC, YUCAEHHDLE MEMOJbL.

JImreparypa

1.

Brenan, K.E. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equa-
tions / K.E. Brenan, S.L. Campbell, L.R. Petzold // Classics in Applied Mathematics. —
Philadelphia: STAM. — 1996. No 14. — 256 p.

Bostpurtes, HO.E. Perynsipabie u CHHTY/ISIDHBIE CHCTEMBI JTUHEHHBIX O0BIKHOBEHHBIX Judde-

penruanbubix ypasuerunii / FO.E. Bospunnes. — HoBocubupck: Hayka, 1980. — 222 c.
Hucraxos, B. ®. Anrebpo-auddepennuaababie omepaTopsbl ¢ KoHeIHbIM saapoM /| B.®. Hu-

ctskoB. — HoBocubupck: Hayka, 1996.

. Ymakos, E.JI. Crarnveckas ycroitansocts saekrpudecknx cucrem /| E.J. Vimmakos. — Hoso-

cubupck: Hayka, 1988.

Banbimes O.A. AHaju3 nepexoJHbIX U CTAIMOHAPHBIX MPOIECCOB B TPYOONPOBOIHBIX CH-
cremax (Teopernuecue u skcnepumenTaibubie acnekTsl) / O.A. Bamsimes, 9.A. Taupos. —
Hoocubupck: Hayxka, 1999. — 164 c.

Csupumiok, I'A. Ksasucraimonapuble TpaeKTOpHU IOJIYJIHHEHHBIX JAUHAMHYIECKUX ypaBHe-
uuit runta Cobonesa / I A. Ceupuok // Ussectust PAH. Cepust maremarnaeckast. — 1993. —
T. 57, Ne 3. — C. 192-207.

Ceupuiok, I A. 3aiaga Bepuruna s iuHeiHbIX ypaBHEHUT COOOIEBCKOTO THITA, ¢ OTHOCH-
TeJIbHO p-cekTopuasbHbiMu orneparopamu / VA, Ceupumiok, C.A. Barpebuna // duddepen-
nuasbhble ypasaenus. — 2002. — T. 38, Ne 12, — C. 1646-1652.

Manakosa, H.A. O pemennn 3amaun JTupuxie — Komm gist ypasuenust Baper6aarra — ['uis-
mana / H.A. Manakosa, E.A. Borareipesa // W3Bectus VIpKyTCKOro rocy1apCTBEHHOTO YHI-
Bepcurerara. Cepusi: Maremaruka. — 2014. — T. 7. — C. 52—60.

Bectauk FOYpI'Y. Cepusa «MartemaTudecKoe MoJejinpoBaHue 71
u nporpammupoBanues (Becruunk HOYpI'Y MMII). 2016. T. 9, Ne 1. C. 59-72



E.V. Chistyakova, Nguyen Duc Bang

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

Mepenkos, A.IT. Teopusi rugpasinyeckux ueneii / A.IL. Mepeukos, B.f. Xacumues. — M.:
Hayka, 1985. — 277 c.

Yucrakosa, E.B. Pacder ruppasindecknx mereil B KBa3WCTAIOHAPHOM HPUOIMKEHUN /
E.B. Yucrakosa, A.A. Jlesun, B.® Yucrakos // Maremarndeckoe MoIeupoBaHmie TPy6o-
MIPOBOJIHBIX CUCTEM YHEPreTukw: TPyabl XII BCepOCCHilCKOr0 HAy9IHOrO CeMWHAPa, C MEXKIy-
HAPONHBIM ydacTueM <MaremMaTndecKre MOAEN U METOILI aHAIN3a U ONTUMAJIHHOTO CUHTE-
3a pa3BUBAIOIIUXCA TPYOONPOBOMHBIX U THApaBIndeckux cucrems. — Upkyrck, UCOM CO

PAH. — 2010. - C. 17-27.

Jlesun, A.A. Pacuer morokopacmpesenenus B cucreme nbiienpurotosienns TOC / AL A. Jle-
But, D.A. Taupos, B.®. Yucrsakos // Maremarnueckoe MojeanpoBarune TPyOOIPOBOIHBIX
cucreM sHepreTukm: TPyabl XII Bcepoccmiickoro HAydHOTO CeMUHApa C MEXKTYyHAPOTHBIM
yaactneM <Martemarndaeckre MOJENN W METOIbl aHAIN3a W ONTUMAJJIHHOTO CUHTE3a PA3BHU-
BAIOIMUXCs TPYOOIIPOBOMHBIX U THAPABINIECKUX cuctems. — Upkyrck, UCOM CO PAH. —
2010. — C. 27-39.

Hemuposuya, B.II. Jlekuuu 1o reopun maremarundeckoii ycroitunsocru / B. I1. JemujgoBud. —
M.: Hayxka, 1967.

Fanrmaxep, @.P. Teopus marpur / ©.P. I'antmaxep. — M.: Hayka, 1967.

Hucrakos, B.®. O rpybom mHIekce HeJuHEHHBIX aarebpo-nuddepeniimaibubix cucrtem /
B.®. Yucrakos // Tpyasr XII Baiikamsckoit Mexpynapoganoi kKoudepennun «Meroast or-
TUMU3ANNN U uX npuaokenusy, 11 Upkyrck, 2001. — C. 213-218.

Xsccapa, B. Teopusi n npuioxkennst 6udypkannn poxaenns mukiaa / B. Xaccapya, H. Kaza-
punos, 1. Ban. — M.: Mup, 1985.

Bynaros M.B. O mnpeobpa3zoBannu aare6po-auddepeHuaabHbIX CUCTeM ypaBHeHwii /
M.B. Bynaros // ZKypHay BbIMUCINTENLHON MaTEeMaTHKN ¥ MaTeMaTHIeCKO# (usukm. —

1994. - T. 34, Ne 3. — C. 360-372.

Yucraxora, E.B. K Borpocy o cyrecTBoBanny nepuoanieckux pertennii qudepeHimaibHo-
anrebpandeckux ypasuennii / E.B. Yucrsakosa, B.®. Yucrsakos // Cubupckuii »xKypHas wH-
nycrpuasibaoit Martemaruku. — 2006. — T. 9. — Ne 3. — C. 148-158.

Kennep, A.B. UccmegoBamme orpaHnyaeHHBIX PeIeHnii TUHEHHBIX ypaBHennit Tumna Cobosesa:
auc. Kaui. dus.-mar. Hayk /| A.B. Kemep. — Hensibunck, 1997. — 115 c.

Carajieesa, M.A. O6 orpaHUYeHHBIX HA TPAMOI PEIeHUsIX JIMHEHHBIX YPaBHEHU CODOIEBCKO-
ro THNA ¢ OTHOCHTENBbHO ceKTopuanbHbiMu omeparopamu / M.A. Carazeesa, B.E. ®emopos
/) UzBecrus By3os. Maremaruka. — 2005. — Ne 4. — C. 81-84.

Yucrsikora, E.B. O paspemmMocTté BBIPOXKJIEHHBIX CHCTEM KBAa3WJIMHENHBIX WHTEIPO-
muddepennmanbubix ypaBaenuii obmero Buga / E.B. Yucrakosa, B.®. HYucraxos // Boi-
gucnresibabie Texnosoruu. — 2011, — T. 16, Ne 5. — C. 100-114.

Enena Buktopona YucTsikoBa, KaHAUIAT (DUBUKO-MATEMATUICCKAX HAYK, HAYUHBIIH

corpyuuk, MHCTUTYT JuHAMUKH cucTeM u Teopuu yupasjenus umenun B.M. Marpocosa
CO PAH (r. Upkyrck, Pocceniickast @enepanus), chistyak@gmail.com.

Hryen /Ilwik banr, acmumpant, HammonanabHblil mccaemoBaTenbeckuit VIpryTckuit ro-

cyJapcTBeHHbiii  Texunveckuii  yuusepcurer (1. Hpkyrck, Poccmiickas ®Peneparmsi),
ducbang@mail.ru.

Hocmynuaa 6 pedaxyuro 4 aseycma 2015 .

72

Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 1, pp. 59-72





