No. 37 (254), issue 10Pages 4 - 11 THE NONLINEAR PROJECTION REGULARIZATION METHOD
A.B. BredikhinaThe projection regularization method was reduced in this article. The regularization parameter was chosen from the residual principle. Estimation of error was obtained in the class $M_r$.
Full text- Keywords
- operator equations, regularization, optimal method, error estimate, ill-posed problem.
- References
- 1. Ivanov V.K., Vasin V.V., Tanana V.P. Teoriya lineynykh nekorrektnykh zadach i eye prilozheniya [The theory of linear ill-posed problems and applications]. Moscow, Nauka Publ., 1978. 206 p.
2. Tanana V.P., Yaparova N.M. The optimum in order method of solving conditionally-correct problems [Ob optimal'nom po poryadku metode resheniya uslovno-korrektnykh zadach]. Siberian J. of Numer. Mathematics, 2006, Vol.9, no. 4, pp. 154 - 168.
3. Menikhes L.D., Tanana V.P. The finite-dimensional approximation for the Lavrent'ev method [Konechnomernaya approksimatsiay v metode Lavrent'eva].Siberian J. of Numer. Mathematics, 1998, Vol.1, no. 1, pp. 416 - 423.
4. Lusternik L.A., Sobolev V.I. Elementy funktsional'nogo analiza [Elements of functional analysis]. Moscow, Nauka Publ., 1965, 520 p.
5. Ivanov V.K., Koroluk T.I. About the estimation of error in the solving of ill-posed problems [Ob otsenke pogreshnosti pri reshenii nekorrektnyhk zadach]. Comput. Math., and Math. Phys., 1969, Vol.9, no. 1, pp. 30 - 41.
6. Tanana V.P. Metody resheniya operatornyhk uravneniy [Methods for the solution of operator equations]. Moscow, Nauka Publ., 1981. 156 p.