No. 37 (254), issue 10Pages 22 - 29 THE INITIAL-FINISH VALUE PROBLEM FOR NONHOMOGENIOUS BOUSSINESQUE - L'OVE EQUATION
A.A. ZamyshlyaevaWe investigate the initial-finish value problem for the Boussinesque-L'ove equation by reducing it to the initial-finish value problem for the Sobolev type equation of the second order. We obtain sufficient conditions about the unique solvability of original and abstract problems.
Full text- Keywords
- the Sobolev type equations, the M,N-functions, the initial-finish value problem.
- References
- 1. Uizem J. Lineynye i nelineynye volny [Linear and nonlinear waves]. Moscow, Mir, 1977.
2. Sviridyuk G.A., Fedorov V.E. Linear Sobolev type equations and degenerate semigroups of operators. Utrecht, Boston, K'oln, Tokyo: VSP, 2003.
3. Zagrebina S.A. On Showalter - Sidorov problem [O zadache Shouoltera - Sidorova] Izvestiya vuzov. Matematika, 2007, no. 3, pp. 22 - 28.
4. Manakova N.A., Dylkov A.G.Optimal control of solutions of initial-finish problem for the linear Sobolev type equations [Optimal'noe upravlenie resheniyami nachal'no-konechnoy zadachi dlya lineynykh uravneniy sobolevskogo tipa] Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i programmirovanie", 2011, no. 17 (234), vyp. 8, pp. 113 - 114.
5. Zamyshlyaeva A.A. The phase spaces of a class of linear sobolev type equations of the second order [Fazovye prostranstva odnogo klassa lineynykh uravneniy sobolevskogo tipa]. Vychislitel'nye tekhnologii, 2003, vol. 8, no. 4, pp.45 - 54.