No. 37 (254), issue 10Pages 40 - 53 THE THERMOCONVECTION PROBLEM FOR THE LINEARIZIED MODEL OF THE INCOMPRESSIBLE VISCOELASTIC FLUID OF THE NONZERO ORDER
T.G. SukachevaThe Cauchy - Dirichlet problem for the linearized system modeling thermoconvection of the incompressible viscoelastic fluid of the nonzero order is considered. This problem is investigated on the base of the theory of relatively p-sectorial operators and degenerative semi-groups of operators. The theorem of the existence of the unique solution of this problem is proved and the description of its extended phase space is received.
Full text- Keywords
- nglish Sobolev type equation, an incompressible viscoelastic fluuid, relatively p-sectorial operator, extended phase space.
- References
- 1. Oskolkov A.P. Initial-value problems for equations of motion Kelvin-Voight and Oldroyd fluids [Nachal'no-kraevye zadachi dlya uravneniy dvizheniya zhidkostey Kel'vina-Foygta i zhidkostey Oldroyta] Trudy mat. in-ta AN SSSR, 1988, no. 179, pp. 126 - 164.
2. Oskolkov A.P. Nonlocal problems for a class of nonlinear operator equations arising in the theory of Sobolev type equations [Nelokal'nye problemy dlya odnogo klassa nelineynykh operatornykh uravneniy, voznikayushchikh v teorii uravneniy tipa S.L.Soboleva] Zap. nauch. semin. LOMI, 1991, vol. 198, pp. 31 - 48.
3. Sviridyuk G.A. On the general operator semigroups theory [K obshchey teorii polugrupp operatorov] Uspekhi mat. nauk., 1994, vol. 49, no. 4, pp. 47 - 74.
4. Oskolkov A.P. Some nonstationary linear and quasilinear systems occurring in the study of movement viscous fluids [O nekotorykh nestatsionarnykh lineynykh i kvazilineynykh sistemakh, vstrechayushchikhsya pri izuchenii dvizheniya vyazkikh zhidkostey] Zap. nauch. semin. LOMI AN SSSR, 1976, vol. 59, pp. 133 - 177.
5. Oskolkov A.P. On the theory of Voigt liquids [K teorii zhidkostey Foygta] Zap. nauchn. sem. LOMI, 1980, vol. 96, pp. 233 - 236.
6. Sviridyuk G.A. Solubility of the thermal convection of viscoelastic incompressible fluid [Razreshimost' zadachi termokonvektsii vyazkouprugoy neszhimaemoy zhidkosti] Izv. vuzov. Matem., 1990, no. 12, pp. 65 - 70.
7. Sviridyuk G.A. Phase spaces of semilinear Sobolev type equations with relatively strong sectorial operator [Fazovye prostranstva polulineynykh uravneniy tipa Soboleva s otnositel'no sil'no sektorial'nym operatorom] Algebra i analiz., 1994, vol. 6, no. 5, pp. 216 - 237.
8. Sukacheva T.G. The study of mathematical models of incompressible viscoelastic fluids: dis. ... Dr. Sci. Science [Issledovanie matematicheskikh modeley neszhimaemykh vyazkouprugikh zhidkostey: dis. ... d-ra fiz.-mat. nauk]. Velikiy Novgorod, 2004. 249 p.
9. Sukacheva T.G. Unsteady linearized model of the motion of an incompressible viscoelastic fluid [Nestatsionarnaya linearizovannaya model' dvizheniya neszhimaemoy vyazkouprugoy zhidkosti] Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, Vyp. 11, 2009, no. 20 (158), pp. 77 - 83.
10. Sukacheva T.G. Unsteady linearized model of the motion of an incompressible viscoelastic fluid of the high order [Nestatsionarnaya linearizovannaya model' dvizheniya neszhimaemoy vyazkouprugoy zhidkosti vysokogo poryadka] Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya 'Matematicheskoe modelirovanie i programmirovanie', 2009, no. 17 (150), vyp. 3, pp. 86 - 93.
11. Sukacheva T.G. The problem of thermal convection for a linearized model of the motion of an incompressible viscoelastic fluid [Zadacha termokonvektsii dlya linearizovannoy modeli dvizheniya neszhimaemoy vyazkouprugoy zhidkosti] Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya 'Matematicheskoe modelirovanie i programmirovanie', 2010, no. 16 (192), vyp. 5, pp. 83 - 93.
12. Sviridyuk G.A., Fedorov V.E. Sobolev type equations and degenerate semigroups of operators, Utrecht-Boston: VSP, 2003. 179 p.
13. Sviridyuk G.A. Quasi-stationary trajectories of semilinear dynamical Sobolev type equations [Kvazistatsionarnye traektorii polulineynykh dinamicheskikh uravneniy tipa Soboleva] Izv. RAN. Ser. Matematika, 1993, vol. 57, no. 3, pp. 192 - 207.
14. Levine H.A. Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $ Du_t =- Au + F (u) $ [Some nonexistance and instability theorems for solutions of formally parabolic equations of the form $Du_t=-Au+F(u)$] Arch. Rat. Mech. Anal., 1973, vol. 51, no. 5, pp. 371 - 386.
15. Sviridyuk G.A., Sukacheva T.G. Cauchy problem for a class of semilinear Sobolev type equations [Zadacha Koshi dlya odnogo klassa polulineynykh uravneniy tipa Soboleva] Sib. mat. zhurn., 1990, vol. 31, no. 5, pp. 109 - 119.
16. Sviridyuk G.A., Sukacheva T.G. Phase spaces of class of operator equations [Fazovye prostranstva odnogo klassa operatornykh uravneniy] Differents. uravneniya, 1990, vol. 26, no. 2, pp. 250 - 258.
17. Sviridyuk G.A., SukachevaT.G. Some mathematical problems of the dynamics of viscoelastic incompressible media [Nekotorye matematicheskie zadachi dinamiki vyazkouprugikh neszhimaemykh sred], Vestnik MaGU. Matematika, 2005, Vyp. 8, pp. 5 - 33.
18. Borisovich Yu.G., Zvyagin V.G., Sapronov Yu.I. Nonlinear Fredholm maps and Leray-Schauder theory [Nelineynye fredgol'movy otobrazheniya i teoriya Lere-Shaudera] Uspekhi matem. nauk., 1977, vol. 32, no. 4, pp. 3 - 54.
19. Marsden Dzh., Mak-Kraken M. Hopf bifurcation and its applications [Bifurkatsiya rozhdeniya tsikla i ee prilozheniya], Moscow: Mir, 1980. 368 p.
20. Bokareva T.A. Investigation of phase space of Sobolev type equations with relatively sectorial operators: Dis. ... cand. Sci. Science [Issledovanie fazovykh prostranstv uravneniy tipa Soboleva s otnositel'no sektorial'nymi operatorami: dis. ... kand. fiz.-mat. nauk], Sankt-Peterburg, 1993. 107 p.
21. Ladyzhenskaya O.A. The mathematical theory of dinamic of viscous incompressible fluid [Matematicheskie voprosy dinamiki vyazkoy neszhimaemoy zhidkosti, izd. 2.], Moscow: Nauka, 1970. 288 p.
22. Sviridyuk G.A. A model of weakly viscoelastic fluid [Ob odnoy modeli slaboszhimaemoy vyazkouprugoy zhidkosti] Izv. vuzov. Matematika, 1994, no. 1, pp. 62 - 70.
23. Sukacheva T.G. A model of motion of an incompressible viscoelastic Kelvin-Voigt fluid of nonzero order [Ob odnoy modeli dvizheniya neszhimaemoy vyazkouprugoy zhidkosti Kel'vina-Foygta nenulevogo poryadka] Differents. uravn., 1997, vol. 33, no. 4, pp. 552 - 557.
24. Sviridyuk G.A. Semilinear Sobolev type equation with relatively bounded operator [Polulineynye uravneniya tipa Soboleva s otnositel'no ogranichennym operatorom] DAN SSSR, 1991, vol. 318, no. 4, pp. 828 - 831.
25. Sviridyuk G.A. Semilinear Sobolev type equation with relatively sectorial operators [Polulineynye uravneniya tipa Soboleva s otnositel'no sektorial'nymi operatorami] Dokl. RAN, 1993, vol. 329, no. 3, pp. 274 - 277.
26. Sviridyuk G.A., Fedorov V.E. Analytic semigroup with kernels and linear Sobolev type equations [Analiticheskie polugruppy s yadrami i lineynye uravneniya tipa Soboleva] Sib. mat. zhurn., 1995, vol. 36, no. 5, pp. 1130 - 1145.
27. Khenri D. Geometric theory of semilinear parabolic equations [Geometricheskaya teoriya polulineynykh parabolicheskikh uravneniy], Moscow.: Mir, 1985. 376 p.