No. 37 (254), issue 10Pages 71 - 81


N.Yu. Dolganina, S.B. Sapozhnikov
Design of new constructions of textile armor panel using supercomputing is considered. Numerical experiments were conducted to study the scalability of problems devoted to the dynamic interaction of an indenter with textile armor panels which are located on the backing material by the finite element analysis in the framework of the LS-DYNA software package. Recommendations to increase the protective properties of armor panels have been given.
Full text
textile armor panel, backing material, impact, FEA model, supercomputer simulation.
1. GOST R 50744 - 95. Armor clothes. Classification and general technical requirements [Broneodezhda. Klassifikatsiya i obshchiye tekhnicheskiye trebovaniya]. Prin. Postanovleniyem Gosstandarta Rossii ot 27.02.95 № 82. Vved. s izm. № 1, 2. Utverzhden v sent. 1998 g., maye 2002. Moscow: IPK izd-vo standartov, 2003. 8 p.
2. Ballistic resistance of body armor. National Institute of Justice, NIJ Standard-0101.06, 2008.
3. Rakhmatullin Kh.A., Demyanov Yu.A. Prochnost pri intensivnykh kratkovremennykh nagruzkakh [Strength at intense short-term loads]. Moscow: GIFML, 1961. 299 p.
4. Lim C.T., Shim V.P.W., Ng Y.H. Finite-element modeling of the ballistic impact of fabric armor. International Journal of Impact Engineering, 2003, vol. 28, no. 1, pp. 13 - 31.
5. Tan V.B.C., Shim V.P.W., Tay T.E. Experimental and numerical study of the response of flexible laminates to impact loading. International Journal of Solids and Structures, 2003, vol. 40, no. 23, pp. 6245 - 6266.
6. Chocron S., Figueroa E., King N., Kirchdoerfer T., Nicholls A.E., Sagebiel E., Weiss C., Freitas C.J. Modeling and validation of full fabric targets under ballistic impact. Composites Science and Technology, 2010, vol. 70, no. 13, pp. 2012 - 2022.
7. Blankenhorn G., Schweizerhof K., Finckh H. Improved Numerical Investigations of a Projectile Impact on a Textile Structure. 4$^{th}$ European LS-DYNA Users Conference. Ulm, 2003, pp. G-I-07 - G-I-14.
8. Talebi H., Wong S.V., Hamouda A.M.S. Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric. Composite Structures, 2009, vol. 87, no. 4, pp. 314 - 320.
9. LS-DYNA Keyword user's manual. v.970. LSTC, 2003. - 1564 p.
10. Martinez M.A., Navarro C., Cortes R., Rodriguez J., Sanchez-Galvez V. Friction and wear behaviour of Kevlar fabrics. Journal of materials science, 1993, vol. 28, no. 5, pp. 1305 - 1311.
11. Dolganina N.Yu. Evaluation of ballistic limit and multilayer fabric plate deflection under indenter impact [Otsenka ballisticheskogo predela i progiba mnogosloynykh tkanevykh plastin pri udare indentorom]. Vestnik YuUrGU. Seriya 'Mashinostroyeniye'. 2010, vol. 15, no. 10(186), pp. 17 - 23.
12. Dolganina N.Yu., Sapozhnikov S.B., Maricheva A.A. Modeling of impact processes in a textile armor and in a human body on a SKIF Ural computational cluster [Modelirovaniye udarnykh protsessov v tkanevykh bronezhiletakh i tele cheloveka na vychislitelnom klastere 'SKIF Ural']. Vychislitelnyye metody i programmirovaniye: Novyye vychislitelnyye tekhnologii. 2010, vol. 11, no. 1, pp. 117 - 126.
13. Vysokoproizvoditelnyy vychislitelnyy klaster 'SKIF Ural' [High-performance computational cluster 'SKIF Ural']. Available at: (accessed 20 July 2011).
14. Superkompyuter 'SKIF - Avrora YuUrGU' [Supercomputer 'SKIF - Avrora YuUrGU']. Available at: (accessed 20 July 2011).