No. 5 (264), issue 11Pages 4 - 12
The Multipoint Initial-finish Problem for Hoff Linear Model
S.A. ZagrebinaArticle is devoted to the single-digit solvability of multipoint initial-finish value problem for a linear Sobolev-type equations. We prove a generalized theorem of the splitting of the space and operators actions. The obtained abstract results are implemented in a specific situation.
Full text- Keywords
- Sobolev type equation, multipoint initial-finish problem, relatively $p$-bounded operators, Hoff linear model.
- References
- 1. Hoff N.J. Creep Buckling. The Aeronautical Quarterly, 1956, vol. 7, no.1, pp. 1 - 20.
2. Sidorov N.A. Common Questions of Regularity in Problems of Ramification Theory. Irkutsk, Publisher Irkutsk Gos. Univ., 1982.
3. Sidorov N.A., Romanova O.A. Application of Certain Results of Branching Theory in the Solution of Degenerate Differential Equations. Differential Equations, 1983, vol. 19, no. 9, pp. 1516 - 1526.
4. Sidorov N.A., Falaleev M.V. Generalized Solutions of Differential Equations with a Fredholm Operator at the Derivative. Differential Equations, 1987, vol. 23, no. 4, pp. 726 - 728.
5. Sviridyuk G.A. Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type. Russian Academy of Sciences. Izvestiya Mathematics, 1994, vol. 42, no. 3, pp. 601 - 614.
6. Sviridyuk G.A., Kazak V.O. The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation. Mathematical Notes, 2002, vol. 71, no. 2, pp. 262 - 266.
7. Sviridyuk G.A., Trineeva I.K. A Whitney Fold in the Phase Space of the Hoff Equation. Russian Mathematics, 2005, vol. 49, no. 10, pp. 49 - 55.
8. Sviridyuk G.A., Shemetova V.V. Hoff Equations on Graphs. Differential Equations, 2006, vol. 42, no. 1, pp. 139 - 145.
9. Sviridyuk G.A., Bayazitova A.A. On Direct and Inverse Problems for the Hoff Equations on Graph. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1 (18), pp. 6 - 17.
10. Sviridyuk G.A., Zagrebina S.A., Pivovarova P.O. Hoff Equation Stability on a Graph. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1 (15), pp. 6 - 15.
11. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, VSP, 2003. 228 p.
12. Sviridyuk G.A., Zagrebina S.A. The Showalter-Sidorov Problem as a Phenomena of the Sobolev-type Equations. J. News of Irkutsk State University. Series 'Mathematics', 2010, vol. 3, no. 1, pp. 51 - 72.
13. Zagrebina S.A., Soloveva N.P. The Initial-Finish Problem for Evolution Sobolev Type Equations on a Graph. Vestnik Yuzhno-Ural'skogo universiteta. Seria ' Matematicheskoe modelirovanie i programmirovanie', 2008, no. 15 (115), issue 1, pp. 23 - 26.
14. Zagrebina S.A. The Initial-Finish Problem for the Navier - Stokes Linear System. Vestnik Yuzhno-Ural'skogo universiteta. Seria 'Matematicheskoe modelirovanie i programmirovanie', 2011, no. 4 (241), issue 7, pp. 35 - 39.
15. Manakova N.A., Dylkov A.G. Optimal Control of Solutions of Initial-Finish Problem for the Linear Sobolev Type Equations. Vestnik Yuzhno-Ural'skogo universiteta. Seria 'Matematicheskoe modelirovanie i programmirovanie', 2011, no. 17 (234), issue 8, pp. 113 - 114.
16. Zamyshlyaeva A.A. The Initial-Finish Value Problem for Nonhomogenious Boussinesque - L$ddot{o}$ve Equation. Vestnik Yuzhno-Ural'skogo universiteta. Seria 'Matematicheskoe modelirovanie i programmirovanie', 2011, no. 37 (254), issue 10, pp. 22 - 29.
17. Keller A.V. The Algorithm for Solution of the Showalter - Sidorov Problem for Leontief Type Models. Vestnik Yuzhno-Ural'skogo universiteta. Seria ' Matematicheskoe modelirovanie i programmirovanie', 2011, no. 4 (241), issue 7, pp. 40 - 46.
18. Shestakov A.L., Keller A.V., Nazarova E.I. The Numerical Solution of the Optimal Demension Problem. Automation and Remote Control, 2011, vol. 72, no. 12, pp. 2524 - 2533.