No. 5 (264), issue 11Pages 25 - 32

Meanings of the First Eigenfunctions of Perturbed Discrete Operator with Simple Spectrum Finding

S.I. Kadchenko, S.N. Kakushkin
In article received analitical formulas for finding first 'weighted', corrections of the perturbation theory perturbed selfadjoint operators, when eigenvalues of unperturbed operators is simple. Received estimate of remainder of Rayleigh-Shredinger's sum of functional series. The method of finding of meanings of eigenfunctions of perturbed discrete operator with a simple spectrum is developed.
Full text
Keywords
'weighted', corrections of the perturbation theory, discrete operators, eigenvalues, eigenfunctions.
References
1. Sviridyuk G.A., Bayazitova A.A. About Direct and Inverse Problems for the Equations of Hoff on the Graph [O pryamoy i obratnoy zadachah dlya uravneniy Hoffa na grafe]. Vestn. Sam. gos. tehn. un-ta. Ser. fiz.-mat. nauki [The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences], 2009, no. 1(18), pp. 6 - 17.
2. Sviridyuk G.A., Zagrebina S.A., Pivovarova P.O. Stability of the Hoff's Equations on the Column [Ustoychivost' uravneniy Hoffa na grafe]. Vestn. Sam. gos. tehn. un-ta. Ser. fiz.-mat. nauki [The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences], 2010, no. 1(15), pp. 6 - 15.
3. Sviridyuk, G.A., Sukacheva T.G. Fast-slow Dynamics of the Viscoelastic Media [Bystro-medlennaya dinamika vyazkouprugih sred]. DAN SSSR [The Report of Academy of Sciences of USSR], 1989, vol. 308, no. 4, pp. 791 - 794.
4. Sadovnichiy V.A. Teoriya operatorov: ucheb. dlya vuzov s uglublennym izucheniem matematiki [The Theory of Operator: the Textbook for High Schools with Profound Learning of Mathematics]. Moscow, Drofa, 2004. 384 p.
5. Sadovnichiy V.A., Dubrovskiy V.V. Remark on a New Method of Calculation of Eigenvalues and Eigenfunctions for Discrete Operators. Journal of Mathematical Sciences, 1995, vol. 75, no. 3, pp. 244 - 248.
6. Dubrovskiy V.V., Sedov A.I. An Estimate for the Difference of Spectral Functions of Legendre-type Operators [Otsenka raznosti spektral'nyh funkciy operatorov tipa Lezhandra]. Fundamental'naya i prikladnaya matematika [Fundamental and an Applied Mathematics], 2000, vol. 6, no. 4, pp. 1075 - 1082.
7. Dubrovskii V.V., Sedov A.I. An Estimate for the Difference of Spectral Functions of Gegenbauer-type Operators in the Norm of $Lsb q$ [Otsenka raznosti spektral'nyh funkciy operatorov tipa Gegenbauera po norme $L_q$]. Izv. Vyssh. uchebn. zaved. mat., 1999, no. 8, pp. 20 - 25.
8. Dubrovskiy V.V., Sedov A.I. An Estimate for the Difference of Spectral Functions of the Selfadjoint Operator [Otsenka raznosti spektral'nyh funkciy samosopryazhennyh operatorov]. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems], 2000, vol. 5, no. 5, pp. 10 - 13.
9. Kadchenko S.I. New Method of Calculation of Eigenvalues of the Spectral Orr-Sommerfeld's Problem [Novyy metod vychisleniya sobstvennyh chisel spektral'noy zadachi orra - zommerfel'da]. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems], 2000, vol. 5, no. 6, pp. 4 - 10.
10. Naymark M.A. Lineynye differentsial'nye operatory [The Linear Differential Operator]. Moscow, Nauka, 1969. 528 p.
11. Kadchenko S.I., Ryazanova L.S. The Numerical Method of Finding Eigenvalues of the Discrete Semi Bounded From Below Operator [Chislennyy metod nahozhdeniya sobstvennyh znacheniy diskretnyh poluogranichennyh snizu operatorov]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya 'Matematicheskoe modelirovanie i programmirovanie', 2011, no. 17 (234), issue 8, pp. 46 - 51.