No. 5 (264), issue 11Pages 75 - 87 The Generalized Linearized Model of Incompressible Viscoelastic Fluid of Nonzero Order
T.G. SukachevaIn the frames of the non-autonomous sobolev type equations The Cauchy - Dirichlet problem for the generalized linearized Oskolkov's system modeling thermoconvection of the incompressible viscoelastic fluid of the nonzero order is considered. The theorem of the existence of the unique solution of this problem is proved and the description of its extended phase space is received.
Full text- Keywords
- nglish Sobolev type equation, an incompressible viscoelastic fluid, Oskolkov models, extended phase space.
- References
- 1. Oskolkov A.P. Initial-boundary Value Problems for Equations of Motion Kelvin-Voight and Oldroyd Fluids [Nachal'no-kraevye zadachi dlya uravneniy dvizheniya zhidkostey Kel'vina-Foygta i zhidkostey Oldroyta]. Trudy Mat. In-ta AN SSSR, 1988, no. 179, pp. 126 - 164.
2. Oskolkov A.P. Nonlocal Problems for One Class of Nonlinear Operator Equations That Arise in the Theory of Sobolev Type Equations. J. of Mathematical Sciences, 1993, vol. 64, no.1, pp. 724 - 735.
3. Karazeeva N.A., Kotsiolis A.A., Oskolkov A.P. Ob attraktorakh i dinamicheskikh sistemakh, porozhdaemykh nachal'no-kraevymi zadachami dlya uravneniy dvizheniya lineynykh vyazkouprugikh zhidkostey [On Attractors and Dynamical Systems Generated by the Initial-boundary Value Problems for Equations of Motion Linear Viscoelastic Fluids]. Sankt-Peterburg, 1988. 58 p.
4. Sviridyuk G.A. On the General Theory of Operator Semigroups. Russ. Math. Surv., 1994, vol. 49, no. 4, pp. 45 - 74.
5. Oskolkov A.P. Some Quasilinear Systems Occurring in the Study of the Motion of Viscous Fluids. J. of Mathematical Sciences, 1978, vol. 9, no. 5, pp. 765 - 790.
6. Oskolkov A.P. Theory of Voight Fluids. J. of Mathematical Sciences, 1983, vol. 21, no. 5, pp. 818 - 821.
7. Sviridyuk G.A. Solubility of the Thermal Convection of Viscoelastic Incompressible Fluid [Razreshimost' zadachi termokonvektsii vyazkouprugoy neszhimaemoy zhidkosti]. Russian Mathematics, 1990, no. 12, pp. 65 - 70.
8. Sviridyuk G.A. Phase Spaces of Semilinear Sobolev Type Equations with Relatively Strong Sectorial Operator [Fazovye prostranstva polulineynykh uravneniy tipa Soboleva s otnositel'no sil'no sektorial'nym operatorom]. St. Petersburg Mathematical J., 1994, vol. 6, no. 5, pp. 216 - 237.
9. Sukacheva T.G. The Study of Mathematical Models of Incompressible Viscoelastic Fluids: dis. Dr. Science [Issledovanie matematicheskikh modeley neszhimaemykh vyazkouprugikh zhidkostey: dis. ... d-ra fiz.-mat. nauk]. Velikiy Novgorod, 2004. 249 p.
10. Sukacheva T.G. Unsteady Linearized Model of the Motion of an Incompressible Viscoelastic Fluid [Nestatsionarnaya linearizovannaya model' dvizheniya neszhimaemoy vyazkouprugoy zhidkosti]. Vestn. Chelyab. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 2009, no. 20 (158), issue 11, pp. 77 - 83.
11. Sukacheva T.G. Unsteady Linearized Model of the Motion of an Incompressible Viscoelastic Fluid of the High Order [Nestatsionarnaya linearizovannaya model' dvizheniya neszhimaemoy vyazkouprugoy zhidkosti vysokogo poryadka]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya 'Matematicheskoe modelirovanie i programmirovanie', 2009, no. 17 (150), issue 3, pp. 86 - 93.
12. Sviridyuk G.A., Fedorov V.E. Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht; Boston; K'oln; Tokyo, VSP, 2003. 179 p.
13. Sukacheva T.G. The Problem of Thermal Convection for a Linearized Model of the Motion of an Incompressible Viscoelastic Fluid [Zadacha termokonvektsii dlya linearizovannoy modeli dvizheniya neszhimaemoy vyazkouprugoy zhidkosti]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya 'Matematicheskoe modelirovanie i programmirovanie', 2010, no. 16 (192), issue 5, pp. 83 - 93.
14. Sukacheva T.G. The Problem of Thermal Convection for the Linearized Model of the Motion of an Incompressible Viscoelastic Fluid [Zadacha termokonvektsii dlya linearizovannoy modeli neszhimaemoy vyazkouprugoy zhidkosti nenulevogo poryadka]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya 'Matematicheskoe modelirovanie i programmirovanie', 2011, no. 37 (254), issue 10, pp. 40 - 53.
15. Sviridyuk G.A. Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type. Izvestiya: Mathematics, 1994, vol. 42, no. 3, pp. 601 - 614.
16. Levine H.A. Some Nonexistance and Instability Theorems for Solutions of Formally Parabolic Equations of the Form $ Du_t =- Au + F (u).$ Arch. Rat. Mech. Anal., 1973, vol. 51, no. 5, pp. 371 - 386.
17. Sviridyuk G.A., Sukacheva T.G. Cauchy Problem for a Class of Semilinear Equations of Sobolev Type. Siberian Mathematical J., 1990, vol. 31, no. 5, pp. 794 - 802.
18. Sviridyuk G.A. The Phase Space of a Class of Operator Equations [Fazovye prostranstva odnogo klassa operatornykh uravneniy]. Differential Equations, 1990, vol. 26, no. 2, pp. 250 - 258.
19. Borisovich Yu.G., Zvyagin V.G., Sapronov Yu.I. Non-linear Fredholm Maps and Leray-Schauder Theory. Russian Mathematical Surveys, 1977, vol. 32, no. 4, pp. 1 - 55.
20. Marsden Dzh., Mak-Kraken M. Bifurkatsiya rozhdeniya tsikla i ee prilozheniya [Hopf Bifurcation and Its Applications]. Moscow, Mir, 1980. 368 p.
21. Bokareva T.A. Investigation of Phase Space of Sobolev Type Equations with Relatively Sectorial Operators: Dis. cand. Science [Issledovanie fazovykh prostranstv uravneniy tipa Soboleva s otnositel'no sektorial'nymi operatorami: dis. ... kand. fiz.-mat. nauk]. Sankt-Peterburg, 1993. 107 p.
22. Sviridyuk G.A. A Model of Weakly Viscoelastic Fluid [Ob odnoy modeli slaboszhimaemoy vyazkouprugoy zhidkosti]. Russian Mathematics, 1994, no. 1, pp. 62 - 70.
23. Sukacheva T.G. On the Solvability of a Nonstationary Problem of the Dynamics of Incompressible Viscoelastic Kelvin - Voight Fluid of Nonzero Order [O razreshimosti nestatsionarnoy zadachi dinamiki neszhimaemoy vyazkouprugoy zhidkosti Kel'vina - Foygta nenulevogo poryadka]. Russian Mathematics, 1998, no. 3 (430), pp. 47 - 54.
24. Sviridyuk G.A. Semilinear Sobolev Type Equation with Relatively Bounded Operator [Polulineynye uravneniya tipa Soboleva s otnositel'no ogranichennym operatorom]. DAN SSSR, 1991, vol. 18, no. 4, pp. 828 - 831.
25. Sviridyuk G.A. Semilinear Sobolev Type Equations with Relatively Sectorial Operators [Polulineynye uravneniya tipa Soboleva s otnositel'no sektorial'nymi operatorami]. Dokl. RAN, 1993, vol. 329, no. 3, pp. 274 - 277.
26. Sviridyuk G.A., Fedorov V.E. On the Identities of Analytic Semigroups of Operators with Kernels. Siberian Mathematical J., 1998, vol. 39, no. 3, pp. 522 - 533.
27. Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. Berlin; Heidelberg; N.Y., Springer Verlag, 1981. 840 p.