No. 27 (286), issue 13Pages 5 - 15 An Algorithm for the Pseudoinversion of Dynamic Systems
S.A. Anikin The problem of the pseudoinversion of a dynamic system (the reconstruction of an normal input of a system by the results of measurement of its output) is considered. The input is understood as a pair: the initial state of the system and an input action onto the system (control, perturbation, etc.). The normal input is one having minimal norm on a set of all inputs consistent with the output. The system output is a function of a time, a system state and an input action. The dynamics of the system is specified by a linear ordinary differential equation. The pseudoinversion problem is solved by the reduction of the original dynamic system to some equivalent system, enabling to obtain an normal input in an explicit form. The reduction is performed using a finite number of algebraic and differentiation operations. The explicit form of the normal input of the reduced system is deduced from a explicit form of a solution of some auxiliary parametric problem of optimal control by passage to the limit.
Full text- Keywords
- inverse problems of dynamics, the inversion of a dynamic system, the input identification.
- References
- 1. Zhukovskii N.E. Teoreticheskaya mekhanika [Theoretical Mechanics]. Moscow, Gostekhizdat, 1952.
2. Krasovskii N.N. Teoriya upravleniya dvizheniem [Theory od Motion Control]. Moscow, Nauka, 1968.
3. Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and Observation under Indeterminacy Conditions]. Moscow, Nauka, 1977.
4. Gusev M.I., Kurzhanskii A.B. Inverse Problems in Dynamics of Control Systems. Mekhanika i nauchno-tekhnicheskiy progress. T.1: Obshchaya i prikladnaya mekhanika [Mechanics and Scientific and Technological Progress. vol.1: General and Applied Mechanics], Moscow, Nauka, 1987, pp. 187-195.
5. Kirin N.E. Metody posledovatel'nykh otsenok v zadachakh optimizatsii upravlyaemykh sistem [Methods of Successive Estimates in Problems of Optimization of Control Systems]. Leningrad, Leningrad. Gos. Univ., 1975.
6. Anikin S.A., Gusev M.I. Estimation of Perturbing Forces by Measuring the Parameters of Motion. Garantirovannoe otsenivanie i zadachi upravleniya [Guaranteed Estimation and Control Problems], Sverdlovsk, Ural. Nauch. Tsentr, Akad. Nauk SSSR, 1986, pp. 19-30.
7. Silverman L.M. Inversion of Multi-variable Linear Systems. IEEE Tr. Aut. Control., 1969, vol. 14, pp. 270-276.
8. Willsky A.S. On the Invertibility of Linear Systems. IEEE Tr. Aut. Control, 1974, vol. 19, pp. 272-274.
9. Sain M.K., Massey J.L. Invertibility of Linear Time-invariant Dynamical Systems. IEEE Tr. Aut. Control, 1969, vol. 14, pp. 141-149.
10. Nikol'skii M.S. On the Perfectly Observable Systems [Ob ideal'no nablyudaemykh sistemakh]. Differentsial'nye uravneniya [Differential Equations], 1971, vol. 7, no. 4, pp. 631-638.
11. Anikin S.A. Error Estimate for a Regularization Method in Problems of the Reconstruction of Inputs of Dynamics Systems. Computational Mathematics and Mathematical Physics, 1997, vol. 37, no. 9, pp. 1020-1031.
12. Anikin S.A. Identification of the Inputs of Quasilinear Systems. Automation and Remote Control, 2007, vol. 68, no. 11, pp. 1900-1916.
13. Il'in A.V., Korovin S.K., Fomichev V.V. Algorithms for the Inversion of Control Linear Systems [Algoritmy obrashcheniya upravlyaemykh lineynykh sistem]. Differentsial'nye uravneniya [Differential Equations], 1998, vol. 34, no. 6, pp. 744-750.
14. Kryazhimskii A.V., Osipov Yu.S. Positional Modeling of Control in a Dynamic System [O pozitsionnom modelirovanii upravleniya v dinamicheskoy sisteme]. Izvestiya AN SSSR. Tekh. kibernetika, 1983, no. 2, pp. 51-60.
15. Maksimov V.I. The Dynamic Estimation of Controls under Indeterminacy Conditions [O dinamicheskom otsenivanii upravleniy v usloviyakh neopredelennosti] Izvestiya RAN. Tekh. kibernetika, 1994, no. 3, pp. 127-133.
16. Savkin A.V., Petersen I.R. Set-Valued State Estimation via Limited Capacity Communication Channel. IEEE Tr. Aut. Control, 2003, vol. 48, no. 4, pp. 676-680.
17. Anan'ev B.I., Anikin S.A. Problem of Reconstructing Input Signals under Communication Constraints. Automation and Remote Control, 2009, vol. 70, no. 7, pp. 1153-1164.
18. Granovskii V.A. Dinamicheskie izmereniya [Dynamical measurements]. Leningrad, Energoizdat, 1984.
19. Shestakov A.L., Iosifov D.Yu. Solving the Inverse Problems of Dynamics Based on Modal Control Theory Using the Measured Vector of Parameters of the Primary Measurement Converter State [Reshenie obratnoy zadachi dinamiki na osnove teorii modal'nogo upravleniya s ispol'zovaniem izmeryaemogo vektora parametrov sostoyaniya pervichnogo izmeritel'nogo preobrazovatelya]. Izvestiya Chelyabinskogo nauchnogo tsentra, 2005, no. 4(30), pp. 144-149.
20. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, Boston, K$ddot{mathrm{o}}$ln, Tokyo, VSP, 2003.
21. Shestakov A.L., Sviridyuk G.A., Zaharova E.V. Dynamical Measurements as an Optimal Control Problem [Dinamicheskie izmereniya kak zadacha optimal'nogo upravleniya]. Obozrenie prikladnoy i promyshlennoy matematiki, 2009, vol. 16, no. 4, pp. 732-733.
22. Shestakov A.L., Sviridyuk G.A. A New Approach to the Measurement of Dynamically Distorted Signals [Novyy podkhod k izmereniyu dinamicheski iskazhennykh signalov]. Vestnik Yuzhno-Ural. gos. univ. Serija: Matematicheskoe modelirovanie i programmirovanie, 2010, no. 16, pp. 116-120.
23. Chistyakov V.F., Scheglova A.A. Izbrannye glavy teorii algebro-differentsial'nykh sistem [Selected Chapters of the Theory of Differential-Algebraic Systems]. Novosibirsk, Nauka, 2003.
24. Boyarintsev Yu.E., Orlova I.V. Block Algebraic-Differential Systems and Their Indices [Blochnye algebro-differentsial'nye sistemy i ikh indeksy]. Izv. vuzov. Matematika, 2004, no. 6, pp. 6-13.
25. Gantmakher F.R. Teoriya matrits [Theory of Matrices]. Moscow, Nauka, 1967.
26. Coddington E.A., Levinson N. Theory of Ordinary Differential Equations. New York, Toronto, London, McGRAW-HILL BOOK COMPANY, 1955.
27. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for Solving Ill-Posed Problems]. Moscow, Nauka, 1986.
28. Anikin S.A. A Parallel Version of the Algorithm for the Reconstruction of Inputs of Dynamic Systems. Algoritmy i program. sredstva paral. vychisleniy [The Algorithms and Software of Parallel Computing], Yekaterinburg, IMM UrO RAN, 2000, no. 4, pp. 24-31.
29. Albert A. Regression and the Moor-Penrose Pseudoinverse. New York and London, ACADEMIC PRESS, 1972.
30. Stewart G.W. On the Continuity of the Generalized Inverses. SIAM J. on Appl. Math., 1969, vol. 17, no. 1. pp. 33-45.
31. Ivanov V.K., Vasin V.V., Tanana V.P. Teoriya lineynykh nekorrektnykh zadach ee prilozheniya [Theory of Linear Ill-Posed Problems and Its Application]. Moscow: Nauka, 1978.