No. 27 (286), issue 13Pages 45 - 57 The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding
S.I. Kadchenko, S.N. KakushkinIn work are received simple formulas of the calculation eigenvalues and analytical formulas of finding 'weighed' corrections of the perturbation theory of the discrete semi bounded from below operators. Estimations remainder of the sum of the Reley-Shredinger's functional series are received also. On the base of received formulas was created non-iteration numerical method, which allowed to find the eigenvalues and meanings of eigenfunctions perturbed spectral problem. The numerical experiment for finding of the eigenfeatures by the Laplas's operator, which was perturbed by operator of the multiplying on twice continuously differentiated function, was organized. From the experiment seen, that results numerical accounts of eigenvalues and meanings of eigenfunctions well-agree with result, which received by well-known methods: finding eigenvalues were compared with method Leverrie, and meanings of eigenfunctions - with methods by Danilevskiy A. M. and Krylov A.N.
Full text- Keywords
- eigenvalues, eigenfunctions, 'weighted', corrections of the perturbation theory, perturbed operators.
- References
- 1. Sadovnichiy V.A., Podolskiy V.E. Tracks of the Operators [Sledy operatorov]. Uspehi matematicheskih nauk [Successes of Mathematical Sciences], Moscow, 2006, vol. 61, no. 5 (371), pp. 89-156.
2. Gokhberg I.C., Kreyn M.G. Introduction to the Theory of the Linear Non-Selfadjoin Operator in a Hilbert Space [Vvedenie v teoriyu lineynyh nesamosopryajennyh operatorov v gilbertovom prostranstve]. Moscow, Science, 1965.
3. Lidskiy V.B. The Self-adjoin Operators Having a Track [Nesamosopryajennye operatory, imeyush'ie sled] Dokl. AN SSSR [Reports of Academy of Sciences of the USSR]. Moscow, 1959, no. 125: 3, pp. 485-487.
4. Sadovnichiy V.A., Podolskiy V.E. About an Evaluation of the First Eigenvalues of the Operator of Sturm-Liuvill [O vychislenii pervyh sobstvennyh zhacheniy operatora Shturma-Leuvill'ya]. DAN(Rossiya) [RAN(Russia)], Moscow, 1996, vol. 346, no. 2, pp. 162-164.
5. Shestakov A.L. Dynamic Accuracy of the Measuring Converter with Correcting Device in the Manner of Sensor's Models [Dinamicheskaya tochnost' izmeritel'nogo preobrazovatelya s korrektiruyuschim ustroystvom v vide modeli datchika]. Metrologiya [Metrology], 1987, no. 2, pp. 26-34.
6. Shestakov A.L. Correction of Dynamic Inaccuracy of the Measuring Converter by the Linear Filter on the Base of Sensor's Models [Korrekciya Dinamicheskoy pogreshnosti izmeritel'nogo preobrazovaniya lineynym fil'trom na osnove modeli datchika]. Izv. Vuzov. Priborostroenie [The Notify of High School, Instrumentmaking], 1991, vol. 34, no. 4, pp. 8-13.
7. Shestakov A.L. Modal Syntheses of the Measuring Converter [Modal'nyy sintez izmeritel'nogo preobrazovatelya]. Izvestiya RAN. Teoriya i sistemy upravleniya [Notify of DAN. Theory and Managerial System], 1995, no. 4, pp. 67-75.
8. Shestakov A.L., Sviridyuk G.A. New Approach to Measurement of the Dynamically Distorted Signal [Novyy podhod k izmereniyu dinamicheskih iskajennyh signalov]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i programmirovanie" - Bulletin of South Ural State University. Seria "Mathematical Modelling, Programming & Computer Software", 2010, no. 16 (192), issue 5, pp. 116-120.
9. Shestakov A.L., Keller A.V., Nazarova E.I. Numerical Solution of Optimal Measurement [Chislennoe reshenie zadachi optimal'nogo izmerenija]. Automatics and Telemechanics, 2012, no. 1, pp. 107-115.
10. Sviridyuk G.A., Bayazitova A.A. About Direct and Inverse Problems for the Equations of Hoff on the Graph [O pryamoy i obratnoy zadachah dlya uravneniy Hoffa na grafe]. Vestn. Sam. gos. tehn. un-ta, Ser. fiz.-mat. nauki [The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences], 2009, no. 1(18), pp. 6-17.
11. Sviridyuk G.A., Zagrebina S.A., Pivovarova P.O. Stability of the Hoff's Equations on the Column [Ustoychivost' uravneniy Hoffa na grafe]. Vestn. Sam. gos. tehn. un-ta, Ser. fiz.-mat. nauki [The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences], 2010, no. 1(15), pp. 6-15.
12. Sadovnichiy V.A., Dubrovskiy V.V., Kadchenko S.I., Kravchenko V.F. Calculating of the First Eigenvalues of the Hydrodynamic Stability Problem of Flow of Viscous Fluid Between Two Rotating Cylinders [Vychislenie pervyh sobstvennyh znacheniy zadachi gidrodinamicheskoy ustoychivosti techeniya vyazkoy jidkosti mejdu dvumya vrash'ayush'imisya cilindrami]. Differential Equations, 2000, vol. 36, no. 6, pp. 742-746.
13. Kadchenko S.I. Computing the sums of Rayleigh-Schrodinger series of perturbed self-adjoint operators. Computational Mathematics and Mathematical Physics, 2007, vol. 47, no. 9, pp. 1435-1445.
14. Kadchenko S.I., Kinzina I.I. Computation of Eigenvalues of Perturbed Discrete Semibounded Operators. Computational Mathematics and Mathematical Physics, 2006, vol. 46, no. 7. pp. 1200-1206.
15. Sadovnichiy V.A., Dubrovskiy V.V., Kadchenko S.I., Kravchenko V.F. First Eigenvalues of Boundary Problem of Hydrodynamic Stability of Flow of Puazejl in a Round Pipe Calculating [Vychislenie pervyh sobstvennyh chisel kraevoy zadachi gidrodinamicheskoy ustoychivosti techeniya Puazeylya v krugloy trube]. Differential Equations, 1998, vol. 34, no. 1, pp. 50-53.
16. Sadovnichiy V.A. Teoriya operatorov: ucheb. dlya vuzov s uglublennym izucheniem matematiki [The Theory of Operator: the Textbook for High Schools with Profound Learning of Mathematics]. Moscow, Drofa, 2004. 384 p.
17. Sadovnichiy V.A., Dubrovskiy V.V. Remark on a New Method of Calculation of Eigenvalues and Eigenfunctions for Discrete Operators [Zamechanie ob odnom novom metode vychisleniya sobstvennyh znacheniy i sobstvennyh funkcyy diskretnyh operatorov]. J. of Mathematical Sciences, 1995, vol. 75, no. 3, pp. 244-248.
18. Dubrovskiy V.V., Sedov A.I. An Estimate for the Difference of Spectral Functions of Legendre-type Operators [Otsenka raznosti spektral'nyh funkciy operatorov tipa Lezhandra]. Fundamental'naya i prikladnaya matematika - J. of Mathematical Sciences, 2000, vol. 6, no. 4, pp. 1075-1082.
19. Kadchenko S.I. New Method of Calculation of Eigenvalues of the Spectral Orr-Sommerfeld's Problem [Novyy metod vychisleniya sobstvennyh chisel spektral'noy zadachi Orra - Zommerfel'da]. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems], 2000, vol. 5, no. 6, pp. 4-10.
20. Kadchenko S.I., Ryazanova L.S. The Numerical Method of Finding Eigenvalues of the Discrete Semi Bounded From Below Operator [Chislennyy metod nahozhdeniya sobstvennyh znacheniy diskretnyh poluogranichennyh snizu operatorov]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i programmirovanie" - Bulletin of South Ural State University. Seria "Mathematical Modelling, Programming & Computer Software", 2011, no. 17 (234), issue 8. pp. 46-51.
21. Naymark M.A. Lineynye differentsial'nye operatory [The Linear Differential Operator]. Moscow, Nauka, 1969, 528 p.