No. 27 (286), issue 13Pages 58 - 68 The Problem of Optimal Measurement of Considering Resonances: the Program Algorithm and Computer Experiment
A.V. Keller, E.V. Zaharova This article describes a program that implements the algorithm of the numerical method for solving the problem of optimal measurement taking into account resonances - the problem of recovering dynamically distorted signal, taking into account the inertia of the measuring device and its mechanical resonances to be solved by using methods of optimal control theory. The basic idea behind the algorithm is to represent the numerical solution of the component measuring trigonometric polynomials, which reduces the problem of optimal control to the problem of convex programming in the unknown coefficients of polynomials. Using standard methods, such as gradient, in solving a convex programming problem, the complexity of the functional quality, leading to unsatisfactory results. It is therefore proposed a different, simpler method, which, together with the more laborious. This paper presents a number of solutions to improve computing speed, a block diagram of the basic procedure of a program written in C + +, and the results of computer simulation models for a specific sensor.
Full text- Keywords
- the problem of optimal measurement, optimal control, Leontief type systems, numerical solution, the program algorithm.
- References
- 1. Shestakov A.L. Measuring Transducer of the Dynamic Parameters of the Principle of Iterative Signal Restoration [Izmeritel'nyj preobrazovatel' dinamicheskih parametrov s iteracionnym principom vosstanovlenija signala]. Pribory i sistemy upravlenija - Instruments and Control Systems, 1992, no. 10, pp. 23- 24.
2. Shestakov A.L., Bizyaev M.N. Recovery of Dynamically Distorted Signal Test and Measurement Systems Using Sliding Mode [Vosstanovlenie dinamicheski iskazhennyh signalov ispytatel'no-izmeritel'nyh sistem metodom skol'zyashchikh rezhimov]. Izvestija RAN, "Jenergetika" - Izvestiya RAN, "Energy", 2004, no. 6, pp. 119-130.
3. Shestakov A.L., Volosnikov A.S. Neural Network Dynamic Model of a Measuring System with Filtering the Recovered Signal [Nejrosetevaja dinamicheskaja model' izmeritel'noj sistemy s fil'traciej vosstanavlivaemogo signala]. Vestnik Yuzhno-Ural'skogo universiteta. Seriya "Komp'juternye tehnologii, upravlenie, radioelektronika" - The Bulletin of the South-Ural State University. Seria "Computer Technology, Control, Electronics", 2006, no. 14 (69), issue 4, pp. 16-20.
4. Shestakov A.L., Sviridyuk G.A. A New Approach to Measuring Dynamically Distorted Signals [Novyj podhod k izmereniju dinamicheski iskazhennyh signalov]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i programmirovanie" - Bulletin of South Ural State University. Seria "Mathematical Modelling, Programming & Computer Software", 2010, no. 16(192), issue 5, pp. 116-120.
5. Shestakov A.L., Keller A.V., Nazarova E.I. Numerical Solution of Optimal Measurement [Chislennoe reshenie zadachi optimal'nogo izmerenija]. Automatics and Telemechanics, 2012, no. 1, pp. 107-115.
6. Keller A.V., Nazarova E.I. The Problem of Optimal Measurement: a Numerical Solution, the Algorithm of the Program [Zadacha optimal'nogo izmerenija: chislennoe reshenie, algoritm programmy]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya "Matematika" J. of News of Irkutsk State University. Seria 'Mathematics', 2011, vol.4, no. 3, pp.74-82.
7. Shestakov A.L., Sviridyuk G.A. Optimal Dynamic Measurement of Distorted Signals [Optimal'noe izmerenie dinamicheski iskazhennyh signalov]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i programmirovanie" - Bulletin of South Ural State University. Seria "Mathematical Modelling, Programming & Computer Software", 2011, no. 17(234), issue 8, pp. 70-75.
8. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semi-groups of Operators. Utrecht, Boston, Koln, Tokyo, VSP, 2003.
9. Keller A.V. About the Algorithm for Solving Optimal Control and Hard Control [Ob algoritme reshenija zadach optimal'nogo i zhestkogo upravlenija] Programmnye produkty i sistemy - Program Products and Systems, 2011, no. 3, pp. 170 - 174.
10. Keller A.V. Numerical Solution of the Problem Starting the Hard Management for Leontief Type Models. Computing Experiment [Chislennoe reshenie zadachi startovogo zhestkogo upravlenija dlja modelej leont'evskogo tipa. Vychislitel'nyj jeksperiment]. Estestvennye i tehnicheskie nauki - Natural and Technical Sciences, 2011, no. 4, pp. 476-482.
11. Sviridyuk G.A., Zagrebina S.A. The problem Showalter - Sidorov as a Phenomenon of the Equations of Sobolev Type [Zadacha Shouoltera - Sidorova kak fenomen uravnenij sobolevskogo tipa]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seria "Matematika" - J. of News of Irkutsk State University. Seria "Mathematics", 2010, vol. 3, no. 1, pp.104-125.
12. Zamyshlyaeva А.A., Yuzeeva A.V. The Initial-Finite Value Problem for the Boussinesq - L'ove Equation [Nachal'no-konechnaja zadacha dlja uravnenija Bussineska-Ljava] Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i programmirovanie" - Bulletin of South Ural State University. Seria "Mathematical Modelling, Programming & Computer Software", 2010, no. 16 (192), issue 5, pp. 23-31.
13. Zagrebina S.A. About Showalter - Sidorov Problem [O zadache Shouoltera-Sidorova]. Russian Mathematics, 2007, no. 3, pp. 22-28.
14. Manakova N.А., Dylkov A.G. About One Optimal Control Problem with the Functional Quality of the General Form [Ob odnoy zadache optimal'nogo upravleniya s funkcionalom kachestva obschego vida] Vestnik Samarakogo gosudarstvennogo tehnicheskogo universiteta. Seriya "Fiziko-matematicheskie nauki", 2011, no. 4(25), pp.18-24.