No. 27 (286), issue 13Pages 86 - 98

The Solvability of Nonstationary Problem of Filtering Theory

M.A. Sagadeyeva
We discuss one problem for class unclassical equations mathematical wave theory. A distinctive feature of this problem is the time dependence of the functional coefficients of an elliptic operator on the right side of the equation. The method of investigation this theory is reduction to problem Cauchy for nonstationary equation of Sobolev type. The Sobolev type equations with time-dependent operator in this formulation are considered for the first time. We introduced definition of relatively spectrally bounded operator-functions. The conditions that guarantee the fulfillment of this task properties allow to allocate the subspace of initial values for which there is only one solution to the Cauchy problem. This subspace we are named the generalized phase space solutions for the nonstationary equations of Sobolev type. The solution of this problem for a Sobolev type equations, as well as in the original formulation, is obtained by recursive formula.
Full text
Keywords
nonstationary equation, Sobolev type equation.
References
1. Sviridyuk G.A. A Model for the Dynamics of an Incompressible Viscoelastic Fluid // Soviet Mathematics - Izvestiya VUZ. Matematika. 1988, vol. 32, no. 1, pp. 94-100.
2. Barenblatt G.I., Zheltov Yu.P., Kochina I.N. Ob osnovnykh predstavleniyakh teorii fil'tratsii v treshchinovatykh sredah [About the Basic Representations of the Theory of a Filtration in Fractures Environments]. Appl. Math. and Mech. 1960, vol. 24, no. 5, pp. 58-73.
3. Demidenko G.V., Uspenskiy S.V. Uravneniya i sistemy, ne razreshennye otnositel'no starshey proizvodnoy [The Equations and the Systems which Have Been not Resolved Concerning the Senior Derivative]. Novosibirsk, Science book, 1998. 438 p.
4. Dzektser Ye.S. Obobshchenie uravneniya dvizheniya gruntovykh vod so svobodnoy poverkhnost'yu [Generalization of the Equation of Movement of Ground Waters with a Free Surface]. Dokl. Akad. Nauk USSR, 1972, vol. 202, no. 5, pp. 1031-1033.
5. Sviridyuk G.A. K obwej teorii polugrupp operatorov [On the General Theory of Operator Semigroups]. Russian Mathematical Surveys, 1994, vol. 49, no. 4, pp. 45-74.
6. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, Boston, VSP, 2003. 216 p.
7. Shestakov A.L., Sviridyuk G.A., Zaharova E.V. Dinamicheskiye izmereniya kak zadacha optimal'nogo izmereniya [Dinamic Measure as a Optimal Control Problem]. Obozrenie prikladnoy i promyshlennoy matematiki - Review of Industrial and Applied Mathematics, 2009, vol. 16, no. 4, pp. 732-733.
8. Shestakov A.L., Sviridyuk G.A. Novyy podkhod k izmereniyu dinamicheski iskazhennykh signalov [Are new approach to measuring dynamically distorted signals]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i programmirovanie" - Bulletin of South Ural State University. Seria 'Mathematical Modelling, Programming & Computer Software', 2010, no. 16(192), issue 5, pp. 88-92.
9. Dalecki Yu.L., Krejn M.G. Ustojchivost' reshenij differencial'nyh uravnenij v banahovom prostranstve [Stability of Decisions of the Differential Equations in Banach Space]. Moscow, Scince, 1970. 536 p.
10. Kato T. Integration of the Equation of Evolution in a Banach Space. J. Math. Soc. of Japan, 1953, vol. 5, pp. 208-234.
11. Ladyzhenskaja O.A., Vishik M.I. Kraevye zadachi dlja uravnenij v chastnyh proizvodnyh i nekotoryh klassov operatornyh uravnenij [Edge Problems for the Equations in Private Derivative and Some Classes of the Operational Equations]. Uspekhi Math. Nauk, 1956, vol. 11, no. 6, pp. 41-97.
12. Yosida К. Functional analysis. Berlin: Springer, 1980. 511 p.
13. Krejn S.G. Lineynye differentsial'nye uravneniya v banakhovom prostranstve [Linear Differential Equations in Banach Spaces]. Moscow, Scince, 1967. 464 p.
14. Henry D. Geometric Theory of Semilinear Parabolic Equations Berlin, Springer, 1993. 376 p.
15. Favini A., Yagi A. Degenerate Differential Equations in Banach Spaces. N.Y., Basel, Hong Kong, Marcel Dekker, Inc, 1999. 236 p.