Volume 6, no. 1Pages 98 - 111

Using Partial Differential Algebraic Equations in Modelling

Nguyen Khac Diep, V.F. Chistyakov
We consider evolutionary systems of partial differential equations depending on a single space variable. It is assumed that the matrices multiplying the derivatives of the desired vector-function are singular in the domain. Such systems are commonly called partial differential algebraic equations (PDAEs). Properties of PDEAs are essentially different from the properties of non-singular systems. In particular, it is impossible to define a type of a system judging by roots of characteristic polynomials. In this paper, we introduce a notion of split systems by which we mean systems allowing existence of non-singular transformations that lead to splitting of the original system to the subsystem with a unique solution and the non-singular subsystem of partial differential equations. This approach makes it possible to investigate the structure of general solutions to differential algebraic equations and, in some cases, to establish solvability of initial-boundary value problems.
Full text
Keywords
partial derivative, differential-algebraic equations, hyperbolic, singular systems, index, canonical form, modelling.
References
1. Wade S.M., Paul I.B. A Differentiation Index for Partial Differential-Algebraic Equations. SIAM J. Sci. Comp., 2000, vol. 21, no. 6, pp. 2295-2316.
2. Sobolev S.L. On a New Problem of Mathematical Physics [Ob odnoy novoy zadache matematicheskoy fiziki]. Izv. AN SSSR. Ser. mat. [Math. USSR. Ser. Math.], 1954, vol. 18, pp. 3-50.
3. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, Boston, Koln, VSP, 2003.
4. Demidenko G.V., Uspenskiy S.V. Uravneniya i sistemy ne razreshennye otnositel'no starshey proizvodnoy [Equations and Systems not Solved for the Highest Derivative]. Novosibirsk, Nauchnaya kniga, 1998.
5. Tairov E.A., Zapov V.V. Integrated Model of the Nonlinear Dynamics of the Steam-Generating Channel Based on Analytical Solutions [ Integral'naya model' nelineynoy dinamiki parogeneriruyushchego kanala na osnove analiticheskikh resheniy]. Voprosy atomnoy nauki i tekhniki. Seriya "Fizika yadernykh reaktorov" [Of Nuclear Science and Technology Series "Physics of Nuclear Reactors"], 1991, issue 3, pp. 14-20.
6. Gunther M., Rentrop P. PDAE-Netzwerkmodelle in Der Elektrischen Schaltungssimulation. Preprint 99/3. Karlsruhe: IWRMMM, 1999.
7. Sviridyuk G.A. On the General Theory of Operator Semigroups. Russian Mathematical Surveys, 1994, vol. 49, no. 4, pp. 45-74.
8. Sidorov N.A., Falaleev M.V. Generalized Solutions of Differential Equations with the Fredholm Operator in the Derivative [Obobshchennye resheniya differentsial'nykh uravneniy s fredgol'movym operatorom pri proizvodnoy]. Differentsial'nye uravneniya [Differential Equations], 1987, vol. 23, no. 4, pp. 726-728.
9. Palamodov, V.P. Lineynye differentsial'nye operatory s postoyannymi koeffitsientami [Linear Differential Operators with Constant Coefficients]. Moscow, Nauka, 1967.
10. Campbell S.L. The Index of Infinite Dimensional Implicit System. Mathematical and Computer Modelling of System, 1999, vol. 5, no. 1, pp. 18-42.
11. Boyarintsev Yu.E. Application of Generalized Inverse Matrix Solutions and Research Systems of Partial Differential Equations of First Order [Primenenie obobshchennykh obratnykh matrits k resheniyu i issledovaniyu sistem differentsial'nykh uravneniy s chastnymi proizvodnymi pervogo poryadka]. Metody optimizatsii i issledovanie operatsiy [Methods of Optimization and Operations Research], Irkutsk: SEI SO AN USSR, 1984. pp. 123-141.
12. Bormotova O.V., Chistyakov V.F. O metodakh chislennogo resheniya i issledovaniya sistem ne tipa Koshi-Kovalevskoy [Methods of Numerical Solutions and Research Systems Are not Cauchy - Kovalevskaya]. Zhurn. vychislit. matematiki i mat. fiziki [Computational Mathematics and Mathematical Physics], 2004, vol. 44, no. 8, pp. 1380-1387.
13. Gaidomak, S.V., Chistyakov V.F. On Systems not of Cauchy-Kovalevskaya Index (1, k) [O sistemakh ne tipa Koshi-Kovalevskoy indeksa (1,k)]. Vychislitel'nye tekhnologii [Computer Applications], 2005, vol. 10, no. 2, pp. 45-59.
14. Boyarintsev Y.E., Chistyakov V.F. Algebro-differentsial'nye sistemy. Metody chislennogo resheniya i issledovaniya [Differential Algebraic Equations. Methods of Numerical Solutions and Research]. Novosibirsk: Nauka, 1998.
15. Petrovskiy I.G. Lektsii ob uravneniyakh s chastnymi proizvodnymi [Lectures on Partial Differential Equations]. Moscow, Leningrad, 1950.
16. Chistyakov V.F., Pjescic M.R. On the Continuous Dependence of Solutions of Linear Systems of Differential-Algebraic Equations. Differential Equations, 2009, vol. 45, no. 3, pp. 374-384.
17. Godunov S.K. Uravneniya matematicheskoy fiziki [Equations of Mathematical Physics]. Moscow, Nauka, 1971.
18. Petrovskiy I.G. Lektsii po teorii obyknovennykh differentsial'nykh uravneniy [Lectures on the Theory of Ordinary Differential Equations]. Moscow, Nauka, 1964.
19. Loginov A.A., Tairov E.A., Chistyakov V.F. Algebraic-Differential Mathematical Model of the System Power Units [Algebro-differentsial'naya sistema matematicheskoy modeli energobloka TES]. Trudy XI mezhdunar. Baykal. shk.-seminara "Metody optimizatsii i ikh prilozheniya", (Irkutsk, Baykal, 5-12 iyulya 1998 g.). T. 4. Chislennyy analiz, obratnye i nekorrektnye zadachi [Proceedings of the XI Intern. Baikal. sch-seminar "Optimization Methods and Their Applications", (Irkutsk, Baikal, 5-12 July 1998), vol. 4. Numerical Analysis, Inverse and Ill-Posed Problems]. Irkutsk, 1998, pp. 119-122.