Volume 6, no. 2Pages 49 - 61 Mathematical Modelling in Piecewise-Uniform Environment Based on the Solution of the Markushevich Boundary Problem in the Class of Automorphic Functions
A.A. Patrushev An algorithm for the explicit solution of the Markushevich boundary value problem in the class of automorphic functions with respect of Fuchsian group $Gamma$ of the second kind is suggested. The boundary condition of the problem is given on the main circle. The coefficients of the tasks are Holder functions. The alqorithm is based on a reduction of the problem to the Hilbert boundary problem. The solution is found in a closed form under additional restriction on the coefficient $b(t)$ of the problem: if $chi_{+}(t), chi_{-}(t)$ are factorization multipliers of coefficient $a(t)$, the product of the function $b(t)$ on the quotient of $overline{chi_{+}(t)}$ and $chi_{+}(t)$ is analytic in the domain $D_{-}$ and automorphic with respect to $Gamma$ in this the domain.
Full text- Keywords
- boundary problems for analytic functions, the Markushevich boundary problem, automorphic functions.
- References
- 1. Vekua I.N., Obobshchyennye analyticheskie funktsii [Generalized Analytic Functions]. Moscow, Fizmatgiz, 1959. 560 p.
2. Ford R., Aftomorfnye funktsii [Automorphic Functions]. Moscow,ONTI, 1936. 340 p.
3. Patrushev A.A., Adukov V.M. Algorithm of Exact Solution of Generalized Four-Element Riemann-Hilbert Boundary Problem with Rational Coefficiets and Its Programm Realization [Algoritm tochnogo resheniya chetyrekhelementnoy zadachi lineynogo sopryazheniya s ratcional'nymi koeffitsientami i ego programmnaya realizatsiya]. Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming & Computer Software", 2010, no. 35 (211), issue 6, pp. 4-12.
4. Patrushev A.A. The Generalized Hilbert - Riemann Boundery Problem on the Singular Circle [Chetyrekhelementnaya zadacha Markushevicha na elinichnoy okruzhnosti]. Izvestiya Smolenskogo Gosudarstvennogo Universiteta [ News of Smolensk State University], 2010, no. 4, pp. 82-97.
5. Patrushev A.A., Adukov V.M. On Explicit and Exact Solution of the Markushevich Boundary Problem for Circle [O yavnom i tochnom resheniyakh zadachi Markushevicha na okruzhnosti]. Izvestiya Saratovskogo Gosudarstvennogo Universiteta. Novaya Seriya. Seriya: Matematika, Mekhanika, Informatika [Proceedings of Saratov State University. Series "Mathematics. Mechanics. Informatics"], 2011, vol. 11, no. 2, pp. 9-20.
6. Patrushev A.A. The Markushevich problem in the class of automorphic functions for arbitrary circle [Zadacha Markushevicha v klasse avtomorfnykh funktsiy v sluchae proizvol'noy okruzhnosti]. Bulletin of the South Ural State University. Series "Mathematics. Physics. Chemistry", 2011, no. 10(227), issue 4, pp. 29-37.
7. Silvestrov V.V., Chibrikova L.I. The Issue of Efficiency of Solving the Boundary Value the Tasks of the Riemann for Automorphic Functions [K sluchayu ob effektivnosti resheniya kraevoy zadachi Rimana dlya aftomorfnykh funktsiy]. Russian Mathematics (Izvestiya VUZ. Matematika), 1978, no. 12, pp. 117-121.
8. Zverovich E.I. Boundary Value Problems in the Theory of Analytic Functions in Holder Classes on Riemann Surfaces. Russian Mathematical Surveys, 1971, vol.26, no. 1, pp. 117-192.
9. Chibrikova L.I. Boundary Value Problem of Riemann for Automorphic Functions in the the Case of Groups with Two Invariants [Kraevaea zadacha Rimana dlya avtomorfnykh funktsiy v sluchae grupp s dvumya invariantami]. Russian Mathematics (Izvestiya VUZ. Matematika), 1961, no. 6, pp. 121-131.
10. Silvestrov V.V. Boundary Value Problem of Hilbert's for One Infinite the Field in the Class of Automorphic Functions [Kraevaya zadacha Gilberta dlya odnoy beskonechnoy oblasti v klasse avtomorfnykh funktsiy]. Trudy Seminara po Kraevym Zadacham [Proceedings of the Seminar on Boundary Value Problems]. Kazan', Publisher Kazan Gos. Univ., 1980, pp. 180-194.
11. Gаknоv, F.D. Degenerate Cases of Singular Integral Equations with Cauchy's Kernel [Vyrozhdennye cluchai osobykh integral'nykh uravneniy c yadrom Koshi]. Differentsial'nye Uravneniya [Differential Equations], 1966, vol. 2, no. 2. pp. 533-544.