Volume 6, no. 2Pages 128 - 132 An Inverse Problem for a Linearized Quasi-Stationary Phase Field Model with Degeneracy
N.D. Ivanova The inverse problem for a linearized quasi-stationary phase field model is considered. The inverse problem is reduced to a linear inverse problem for the first order differential equation in a Banach space with a degenerate operator at the derivative and an overdetermination condition on the degeneracy subspace. The unknown parameter in the problem dependens on the source time function. The theorem of existence and uniqueness of classical solutions is proved by methods of degenerate operator semigroup theory at some additional conditions on the operator. General results are applied to the original inverse problem.
Full text- Keywords
- обратная задача, модель фазового поля, уравнение соболевского типа, вырожденный оператор, полугруппы операторов, банаховы пространства.
- References
- 1. Urazaeva A.V., Fedorov V.E. Prediction-Control Problem for Some Systems of Equations of Fluid Dynamics. Differential Equations, 2008, vol. 44, no. 8, pp. 1147-1156.
2. Urazaeva A.V., Fedorov V.E. On the Well-Posedness of the Prediction Control Problem for Certain Systems of Equations. Mathematical Notes, 2009, vol. 25, no. 3, pp. 426-436.
3. Fedorov V.E., Urazaeva A.V. Linear Evolutionary Inverse Problem for Sobolev Type Equations [Lineinaya evoluzionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa]. Neklassicheskie uravnenia matematicheskoi fiziki. Novosibirsk: Institut matematiki im. Soboleva SO RAN [Nonclassical Mathematical Phisics Equations. Novosibirsk: Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences], 2010, pp. 293-310.
4. Fedorov V.E., Ivanova N.D. Nonlinear Evolutionary Inverse Problem for Certain Sobolev Type Equations [Nelineinye evolutsionnye obratnye zadachi dlya nekotorykh uravnenii sobolevskogo tipa]. Sibirskie elektronnye matematicheskie izvestia. P.I. "Teoria i chislennye metody reshenia obratnyh i nekorrektnyh zadach" [Siberian Electronic Mathematical News. P.I. "Theory and Inverse and Ill-Posed Problems Numerical Solving Methods"], 2011, pp. 363-378. Available at: http://semr.math.nsc.ru/v8/c182-410.pdf (accessed 8 February 2013).
5. Ivanova N.D., Fedorov V.E., Komarova K.M. Nonlinear Evolutionary Inverse Problem for the Oskolkov System, Linearized in a Stationary Solution Neighbourhood [Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoy v okrestnosti statsionarnogo resheniya]. Vestnik Chelyabinskogo gosudarstvennogo universiteta. Matematika. Mekhanika. Informatika [Chelyabinsk State University bulletin. Mathematics. Mechanics. Informatics.], 2012, vol. 13, no. 26 (280), pp. 50-71.
6. Fedorov V.E. Degenerate Strongly Continuous Operator Semigroups [Vyrozhdennye silno nepreryvnye polugruppy operatorov]. Algebra i analiz [Algebra and Analysis], 2000, vol. 12, no. 3, pp.173-200.
7. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, Boston, Koln, VSP, 2003.