No. 17 (234), issue 8Pages 70 - 75

OPTIMAL MEASUREMENT OF DYNAMICALLY DISTORTED SIGNALS

A.L. Shestakov, G.A. Sviridyuk
There has been suggested new approach to measure a signal distorted as by inertial measurement transducer, as by its resonances.
Full text
Keywords
optimal measurement, dynamically distorted signals, resonances, optimal control, Leontief type system.
References
1. Granovskii, V.A. Dynamic Measurements / V.A. Granovskii. - Leningrad: Energoizdat, 1984. (in Russian)
2. Shestakov, A.L. Dynamic accuracy of measurement transduser with a sensor-model based compensating divice / А.L. Shestakov // Меtrology. - 1987. - № 2. - С. 26 - 34. (in Russian)
3. Derusso, P.M. State Variables for Engineers /P.M. Derusso, R.J. Roy, C.M. Close. - N.-Y.; London; Sydney: Wiley, 1965.
4. Shestakov, A.L. Dynamic error correction method / A.L. Shestakov // IEEE Transactions on Instrumentation and Measurement. - 1996. - V. 45, № 1. - P. 250 - 255.
5. Shestakov, A.L. A new approach to measurement of dinamically distorted signal / A.L. Shestakov, G.A. Sviridyuk // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - № 16 (192), vyp. 5. - P. 116 - 120. (in Russian)
6. Кеller, А.V. The regularization property and the computational solution of the dynanic measure problem / А.V. Кеller, Е.I. Nazarova // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - № 16 (192), vyp. 5. - P. 32 - 38. (in Russian)
7. Bizyaev, М.N. Dynamic models and algorithms for restoring the dynamically destorted signals in measuring systems using in sliding modesе [Text]: Ph.D. Thesis: 05.13.01 / М.N. Bizyaev. - Chelyabinsk, 2004.- 179 с. (in Russian)
8. Iosifov, D.Y. Dynamic models and signal restoration algorithms for measurements systems with observable state vector: Ph.D. Thesis: 05.13.01 / D.Y. Iosifov. - Chelyabinsk, 2007. (in Russian)
9. Shestakov, А.L. Dynamical measurement as an optimal control problem / А.L. Shestakov, G.А. Sviridyuk, Е.V. Zaharova // Obozrenie prikladnoy i promishlennoy matematiki. - 2009. - Т. 16, vyp. 4. - С. 732 - 733. (in Russian)
10. Sviridyuk, G.A. Numerical solutions of systems of equations of Leontieff type / G.A. Sviridyuk, S.V. Brychev // Rus. Math. - 2003. - V. 47, № 8. - P.44 - 50.(in Russian)
11. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semi-groups of Operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; Koln; Tokyo: VSP, 2003.
12. Sviridyuk, G.A. The Showalter-Sidorov problem as a phenomenon of the Sobolev type equations / G.А. Sviridyuk, S.А. Zagrebina // Izvestia ISU. Seriya "Mathematics". - Irkutsk, 2010. - Т. 3, № 1. - С. 104 - 125. (in Russian)
13. Zamyshlyaeva, А.A. The initial-finish value problem for the Boussinesque-Love equation defined on graph / А.А. Zamyshlyaeva, А.V. Yuzeeva // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - № 16 (192), vyp. 5. - P. 23 - 31. (in Russian)
14. Manakova, N.A. Optimal control to solutions of the Showalter-Sidorov problem for a Sobolev type equation / N.А. Маnакоvа, Е.А. Bogonos // Izvestia ISU. Seriya "Mathematics". - Irkutsk, 2010. - Т. 3, № 1. - С. 42 - 53. (in Russian)
15. Zagrebina, S.A. About Showalter-Sidorov problem / S.А. Zаgrеbinа // Izvestia VUZ. Mathematics. - 2007.- № 3.-С. 22 - 28. (in Russian)
16. Fedorov, V.Е. Optimal control problem for one class of degenerate equations / V.Е. Fedorov, М.V. Plehanova // Izvestia RAN. Theory and systems of control. - 2004. -Т. 9, № 2. - C. 92 - 102. (in Russian)
17. Кеller, А.V. A numerical solving optimal control problem for degenerate linear systems of ordinary differential equations type system with Showalter-Sidorov initial condition / А.V. Кеller // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - №27 (127). vyp. 2. - P. 50 - 56. (in Russian)