Volume 6, no. 4 Pages 5 - 14 On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations
M.V. Bulatov, O.S. BudnikovaThere is the necessity to study integral-algebraic equations if a prototype process has an aftereffect at the analysis of various areas of science. Particularly, a system of interrelated Volterra equations of the first and second kind and algebraic equations can be written as integral-algebraic equation. In this paper linear integral-algebraic equations are considered. We have constructed multistep methods for numerical solutions of IAEs. These methods are based on Adams quadrature formulas and on extrapolation formulas as well. We have proven suggested algorithms convergence. In this paper we show that our multistep methods have a property of self-regularizing; and regularization parameter is the step of a grid, which is connected with the level of accuracy of right-part error of the system under consideration. The results of numerical experiments illustrate theoretical computations.
Full text- Keywords
- integral-algebraic equations; multistep methods; self-regularization.
- References
- 1. Apartsyn A.S. Nonclassical Linear Volterra Equations of the First Kind. VSP, Utrecht, 2003.
2. Apartsyn A.S., Bakushinskii A.B. Approximate Solution of Volterra Integral Equations of the First Kind by the Quadrature Method [ Priblizhennoe reshenie integral'nyh uravnenij Vol'terra 1 roda metodom kvadratur]. Differential and Integral Equations, Irkutsk. Gos. Univ., Irkutsk, 1973, issue 1, pp. 107-116.
3. Boyarintsev YU.E. Reguljarnye i singuljarnye sistemy linejnyh obyknovennyh differencial'nyh uravnenij [Regular and Singular Systems of Linear Ordinary Differential Equations]. Novosibirsk, Nauka, 1980. 222 p.
4. Boyarintsev YU.E. Application of Generalized Inverse Matrices to Solve and to Research Systems of Partial Differential Equations of First Order [Primenenie obobshchennykh obratnykh matrits k resheniyu i issledovaniyu sistem differentsial’nykh uravneniy s chastnymi proizvodnymi pervogo poryadka]. Metody optimizatsii i issledovanie operatsiy [Methods of Optimization and Operations Research], Irkutsk, SEI SO AN USSR, 1984, pp. 123-141.
5. Boyarintsev YU.E. Metody reshenija vyrozhdennyh sistem obyknovennyh differencial'nyh uravnenij [Methods of Solution of Singular Systems of Ordinary Differential Equations]. Novosibirsk, Nauka, 1988. 158 p.
6. Boyarintsev YU.E. Metody reshenija nepreryvnyh i diskretnyh zadach dlja singuljarnyh sistem uravnenij [Methods of Solution of Continuous and Discontinuous Problems for Singular Systems of Equations]. Novosibirsk, Nauka, 1996. 261 p.
7. Boyarintsev, YU. E., Korsukov, V. M. Application of Difference Methods to Solve Regular Systems of Ordinary Differential Equations [Primenenie raznostnyh metodov k resheniju reguljarnyh sistem obyknovennyh differencial'nyh uravnenij]. Vopr. prikladnoj matematiki [Questions of Applied Mathematics], Irkutsk, SEI SO AN USSR, 1975, pp. 140-152.
8. Boyarintsev YU.E., Orlova I.V. Puchki matric i algebro-differencial'nye sistemy [Pencil Matrix and Algebraic-Differential Systems]. Novosibirsk, Nauka, 2006. 124 p.
9. Budnikova O.S., Bulatov M.V. Numerical Solution of Integral-Algebraic Equations of Multistep Methods. Computational Mathematics and Mathematical Physics, 2012, vol. 52, issue 5, pp. 691-701.
10. Bulatov M.V., Chistjakov V.F. Solution of Algebro-Differential Systems by Least Square Method [Reshenie algebro-differencial'nyh sistem metodom naimen'shih kvadratov]. Trudy XI Mezhdunar. Bajkal'skoj shkoly-seminara Metody optimizacii i prilozhenija [Prod. XI Baikal Int. workshop 'Optimization Methods and Applications']. Irkutsk, ESI SB RAS, 1998, vol. 4, pp. 72-75.
11. Bulatov M.V. Regularization of Singular Systems of Volterra Integral Equations. Computational Mathematics and Mathematical Physics, 2002, vol. 42, no. 3, pp. 315-320.
12. Verlan' A.F., Sizikov V.S. Integral'nye uravnenija: metody, algoritmy, reshenija [Integral Equations: Methods, Algoritms, Solutions]. Kiev, Naukova dumka, 1986.
13. Ten Men Yan Priblizhennoe reshenie linejnyh integral'nyh uravnenij Vol'terra I roda [Approximate Solution of Linear Volterra Integral Equations of the First Kind]. Candidate's Dissertation in Mathematics and Physics, Irkutsk, 1985.
14. Chistyakov V.F. On Singular Systems of Ordinary Differential Equations and Their Integrals Analogues [ O singuljarnyh sistemah obyknovennyh differencial'nyh uravnenij i ih integral'nyh analogah]. Lyapunov Functions and Applications, Novosibirsk, Nauka, 1987, pp. 231-239.
15. Harrier E., Wanner G. Solving Ordinary Differential Equations II. Springer-Verlag, 1991.
16. Brenan K.F., Campbell S.L., Petzold L.R. Numercal Solution of Initial-Value Problems in Differental-Algebraic Equations. Appl. Math., Philadelphia, 1996.
17. Brunner H., van der Houwen P.J. The Numercal Solution of Volterra Equations. Amsterdam, North-Holland, CWI Monographs 3, 1986.
18. Brunner H. Collocation Methods for Volterra Integral and Related Functioal Equations. Unversity Press, Cambridge, 2004.
19. Kauthen J.P. The Numerical Solution of Integral-Algebraic Equations of Index-1 by Pollinomial Spline Collocation Methods. Math. Comp., 2000, vol. 236, pp. 1503-1514.
20. Linz P.A Survey of Methods for the Solution of Volterra Integral Equations of the First Kind. Collocation Methods for Volterra Integral and Related Functional Equations, University Press, Cambridge, 2004.
21. Hadizadeh M., Ghoreishi F., Pishbin S. Jacobi Spectral Solution for Integral Algebraic Equations of Index-2. Appl. Numer. Math, 2011, vol. 61, issue 1, pp. 131-148.