Volume 6, no. 4 Pages 87 - 100 Quadrature Formulas with High Order Approximation
D.A. SilaevIn the article the method of creation the quadrature formulas with high order approximation for a wide class of the areas is given. This method is based on approach of smooth function on the plane by the semilocal smoothing spline or S-spline. Semilocal smoothing splines are initiated by D.A. Silaev. Earlier the splines of the third and fifth degree are considered and applied. This work is devoted to use of S-splines of higher degrees. Steady S-splines of a class of C^0 (only continuous), consisting of polynoms of high degree of n (n=9, 10) makes it possible to receive quadrature formulas of the 10th and 11th orders of approximation. It is supposed that integrand function belongs to C^p class (to p=10, 11) in a bigger area, than initial area on which integration is conducted. It is also supposed that the border of area is set parametrically that helps to consider area border with a fine precision. Similar approach is possible for the construction of cubature formulas.
Full text- Keywords
- an approximation; a spline; integrals; quadrature formulas; numerical methods.
- References
- 1. Babenko K.I. Osnovy chislennogo analiza [Fundamentals of Numerical Analysis]. Moscow, Izhevsk, NITs Regulyarnaya i khaoticheskaya dinamika, 2002.
2. Sobolev S.L. Vvedenie v teoriyu kubaturnykh formul [Introduction to the Theory of Cubature Formulas]. Moscow, Nauka, 1974.
3. Mysovskikh I.P. Interpolyatsionnye kubaturnye formuly [Java Applet Formula]. Moscow, Nauka, 1981.
4. Krylov A.N. Lektsii o priblizhennykh vychisleniyakh [Lectures on Approximate Calculations]. Moscow, Leningrad, GITTL, 1950.
5. Stechkin S.B., Subbotin Yu.N. Splayny v vychislitel'noy matematike [Splines in Computational Mathematics]. Moscow, Nauka, 1976.
6. Zav'yalov Yu.S., Kvasov B.I., Miroshnichenko V.L. Metody splayn-funktsiy [Methods of Spline Functions]. Moscow, Nauka, 1980.
7. Kolmogorov A.N. O predstavlenii nepreryvnykh funktsiy neskol'kikh peremennykh v vide superpozitsii funktsiy odnogo peremennogo i slozheniya [On the Representation of Continuous Functions of Several Variables by Superposition of Functions of One Variable and Addition]. Moscow, Nauka, 1985.
8. Sobolev S.L., V.L. Vaskevich V.L. Kubaturnye formuly [Cubature Formula]. Novosibirsk, Izd-vo IM SO RAN, 1996.
9. Ramazanov M.D. Teoriya reshetchatykh kubaturnykh formul s ogranichennym pogranichnym sloem [The Theory of Lattice Rules with a Limited Boundary Layer]. Ufa, IMVTs UNTs RAN, 2009.
10. Silaev D.A., Korotaev D.O. Cubature Formulas of High-Order Methods for a Wide Range of Areas [O kubaturnykh formulakh vysokogo poryadka approksimatsii dlya shirokogo klassa oblastey]. Sbornik trudov XVI mezhdunarodnoy konferentsii 'Matematika. Komp'yuter. Obrazovanie' [Proceedings Works of the XVI International Conference flqq Mathematics. Computer. Education'], Izhevsk, 2009, vol. 2, pp. 20-38.
11. Silaev D.A. Cubature Formulas of High-Order Methods for Arbitrary Domains [O kubaturnykh formulakh vysokogo poryadka approksimatsii dlya proizvol'nykh oblastey]. Sbornik trudov mezhdunarodnoy konferentsii 'Sovremennaya matematika i matematicheskoe obrazovanie, problemy istorii i filosofii matematiki' [Proceedings Works International Conference ' Contemporary Mathematics and Mathematics Education, the Problems of the History and Philosophy Mathematics'], Tambov, 2008, pp. 65-70.
12. Silaev D.A. Semilocal Smoothing S- splines [Polulokal'nye sglazhivayushchie S-splayny]. Komp'yuternye issledovaniya i modelirovanie [Computer Research and Modelling], 2010, vol. 2, no. 4, pp. 349-358.
13. Silaev D.A., Yakushina G.I. S-Spline Approximation of Smooth Functions [Priblizhenie S-splaynami gladkikh funktsiy]. Trudy seminara imeni I.G. Petrovskogo [Proceedings of the Seminar Named I.G. Petrovsky], 1984, issue 10, pp. 197-206.
14. Silaev D.A., Korotaev D.O. S-Spline Lap [S-splayn na kruge]. Tezisy mezhdunarodnoy konferentsii 'Matematika. Komp'yuter. Obrazovanie' [Proceedings of the International Conference 'Mathematics. Computer. Education'], Pushchino, 2003, pp. 157.