Volume 7, no. 1Pages 49 - 61 Calculation of Shear Modulus Behind Shock Wave
E.I. Kraus, V.M. Fomin, I.I. ShabalinThe authors implement the approach of calculation of mechanical characteristics of substances behind the front of strong shock waves in a consolidated system of few-parameter equation of state. The results are compared with available theoretical calculations and experimental data. For uranium the authors provide an analytical approximation of the Poisson ratio of the pressure behind the shock wave and determined non-monotonic dependence of the shear modulus on the pressure and temperature.
Full text- Keywords
- the equation of state; shock waves; Poisson's ratio; shear modulus.
- References
- 1. Kraus E.I. Few-parameter Equation of State Solid at High Energy Density [Maloparametricheskoe uravnenie sostoyaniya tverdogo veshestva pri visokih plotnostyah energii]. Vestnik NGU, 2007, no. 2, vol. 2, pp. 65-73.
2. Al'tshuler L.V., Kormer S.B., Brazhnik M.I., Vladimirov L.A. Isentropic Compressibility of Aluminum, Copper, Lead And Iron at High Pressures [Ize'ntropicheskaya szhimaemost' alyuminiya, medi, svintsa i zheleza pri vysokih davleniyah]. Journal of Applied Mechanics and Technical Physics, 1960, vol. 38, no. 4, pp. 1061-1073.
3. Vorob'ev A.A., Dremin A.N., Kanel' G.I. The Shock Compression Ratio Dependence of the Aluminum Elastic Modulus [ Zavisimost' koe'ffitsientov uprugosti alyuminiya ot stepeni szhatiya v udarnoy volne ]. Journal of Applied Mechanics and Technical Physics, 1974, no. 5, pp. 94-100.
4. Al'tshuler L.V., Brazhnik M.I., Telegin G.S. Strength and Elasticity of Iron and Copper at High Shock-Wave Compression Pressures [Prochnost' i uprugost' zheleza i medi pri vysokih davleniyah udarnogo szhatiya]. Journal of Applied Mechanics and Technical Physics, 1971, no. 6, pp. 159-166.
5. Al'tshuler L.V. Application of Shock Waves in High-Pressure Physics [Primenenie udarnyh voln v fizike vysokih davleniy]. Advances in Physical Sciences, 1965, vol. 85, issue 2, pp. 197-258.
6. Landau L.D., Stanyukovich K.P. On the Study of Detonation of Condensed Explosives [Ob izuchenii detonatsii kondensirovannykh vzryvchatykh veschestv]. Dokl. AN SSSR, 1945, vol. 46, pp. 399-406.
7. Dugdale J.S., McDonald D. The Thermal Expansion of Solids. Phys. Rev., 1953, vol. 89, no. 4, pp. 832-851. DOI: 10.1103/PhysRev.89.832
8. Zubarev V.N., Vaschenko V.Ya. About the Gruneisen Coefficient [O koeffitsiente Gryunayzena], Fizika Tverdogo Tela [Soviet Physics, Solid State], 1963, vol. 5, issue 3, pp. 886-891.
9. Asay J.R., Chhabildas L.C., Kerley G.I., Trucano T.G. High Pressure Strength of Shocked Aluminum. Shock Waves in Condensed Matter, N.-Y., American Institute of Physics, 1985, pp. 145-149.
10. Neal T. Mach Waves and Reflected Rarefactions in Aluminum. J. Appl. Phys., 1976, vol. 46, no. 6, pp. 2521-2527. DOI: 10.1063/1.321928
11. McQueen R.G., Fritz J.N., Morris C.E. The Velocity of Sound Behind Strong Shock Waves in 2024 Al. Shock Waves in Condensed Matter, 1984, pp. 95-98.
12. Hayes D, Hixson R.S., McQueen R.G. High Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of State From Release Wave Measurements in Shock-Loaded Copper. Shock Compression of Condensed Matter, 2000, pp. 483-488.
13. LASL Shock Hugoniot Data, 1980, 658 p.
14. Kusubov A.S., van Thiel M. Measurement of Elastic and Plastic Unloading Wave Profiles in 2024-T4 Aluminum Alloy. J. Appl. Phys., 1969, vol. 40, no. 9, pp. 3776-3779. DOI: 10.1063/1.1658271
15. Kusubov A.S., van Thiel M. Dynamic Yield Strength of 2024-T4 Aluminum at 313 kbar. J. Appl. Phys., 1969, vol. 40, no. 2, pp. 893-898. DOI: 10.1063/1.1657482
16. Erkman J.O., Christensen A.B. Attenuation of Shock Waves in Aluminum. J. Appl. Phys., 1967, vol. 38, no. 13, pp. 5395-5403. DOI: 10.1063/1.1709331
17. Yaziv D., Rosenberg Z., Partom Y. Variation of the Elastic Constants of 2024-T351 Al Under Dynamic Pressures. J. Appl. Phys., 1982, vol. 53, no. 1, pp. 353-355. DOI: 10.1063/1.329895
18. Yu Yu-Ying et al. Shear Modulus of Shock-Compressed LY12 Aluminum up to Melting Point. Chinese Phys. B., 2008, vol. 17, no. 1, pp. 264-269. DOI: 10.1088/1674-1056/17/1/046
19. Yu Yu-Ying et al. Sound Velocity and Release Behavior of Shock-Compressed LY12-Al. Chinese Phys. Lett., 2005, vol. 22, no. 7, pp. 1742-1745. DOI: 10.1088/0256-307X/22/7/050
20. Glushak B.L., Novikov S.A., Bat'kov Yu.V. Constitutive Equation for Describing High Strain Rates of Al and Mg in a Shock Wave [Opredelyayuschee uravnenie Al i Mg dlya opisaniya vysokoskorostnogo deformirovaniya UV]. Fizika Goreniya i Vzryva, 1992, no. 1, pp. 84-89.
21. Chhabildas L.C., Asay J.R. Time-Resolved Wave Profile Measurements in Copper To Megabar Pressures. High Pressure in Research and Industry, 8th AIRAPT Conf., 1981, pp. 183-189.
22. Hu J.B., Jing F.Q., Cheng J.X. Sound Velocities at High Pressures and Shock-Melting Of Copper. Chinese Journal of High Pressure Physics, 1989, vol. 3, pp. 187-197.
23. Kozlov E.A., Pankratov D.G., Tkachyov O.V., Yakunin A.K. Sound Velocities and Shear Strength of Shocked U within 10-250 GPa. Book of Abstracts 19th European Conference on Fracture, 2012, pp. 146.
24. Kraus E.I. The Calculation of the Elastic Moduli of Metal Behind a Strong Shock Wave [Raschet moduley uprugosti metallov za frontom sil'nyh udarnyh voln]. Vestnik NGU, 2009, vol. 4, no.4, pp. 79-90.
25. Novozhilov V.V. Teoriya uprugosti [Theory of Elasticity]. Leningrad, Sudprodgiz, 1958, 370 p.
26. Glushak B.L., Kuropatenko V.F., Novikov S.A. Issledovanie prochnosti materialov pri dinamicheskih nagruzkah [Investigation of the Strength of Materials Under Dynamic Loads], 1992. 295 p.
27. Abey A.E. Effect of Hydrostatic Pressure on the Stress-Strain Curves of OFHC Copper. J. Appl. Phys, 1971, vol. 42, no. 10, pp. 4085-4088. DOI: 10.1063/1.1659730
28. Chen S.R., Gray G.T. Constitutive Behavior of Tantalum And Tantalum-Tungsten Alloys. Metall. Mater. Trans., 1996, vol. 27, no. 10, pp. 2994-3006. DOI: 10.1007/BF02663849
29. Goto D.M., Bingert J.F., Reed W.R., Garrett R.K. Anisotropy Corrected MTS Constitutive Strength Modeling in HY-100 Steel. Scripta Mater, 2000, vol. 42, no. 12, pp. 1125-1131. DOI: 10.1016/S1359-6462(00)00347-X
30. Steinberg D.J., Cochran S.G., Guinan M.W. A Constitutive Model for Metals Applicable at High-Strain Rate. J. Appl. Phys., 1980, vol. 51, no. 3, pp. 1498-1504. DOI: 10.1063/1.327799
31. Steinberg D.J., Lund C.M. A Constitutive Model for Strain Rate from 10^{-4} to 10^{-6}s^{-1}. J. Appl. Phys., 1989, vol. 65, no. 4, pp. 1528-1533. DOI: 10.1063/1.342968
32. Nadal M.H., Le Poac P. Continuous Model for The Shear Modulus as a Function of Pressure and Temperature Up to the Melting Point: Analysis and Ultrasonic Validation. J. Appl. Phys., 2003, vol. 93, no. 5, pp. 2472-2480. DOI: 10.1063/1.1539913
33. Burakovsky L., Greeff C.W., Preston D.L. Analytic Model of the Shear Modulus at All Temperatures and Densities. Phys. Rev. B., 2003, vol. 67, no. 9, id.094107. DOI: 10.1103/PhysRevB.67.094107
34. Burakovsky L., Preston D.L. Shear Modulus at All Pressures: Generalized Guinan-Steinberg Formula. J. Phys. Chem. Solids., 2006, vol. 67, no. 9-10, pp. 1930-1936. DOI: 10.1016/j.jpcs.2006.05.041
35. El'kin V.M., Mihaylov V.N, Mihaylova T. Yu. Semi-Empirical Model of the Shear Modulus in a Wide Range of Temperatures and Pressures of Shock Compression [Poluempiricheskie modeli modulya sdviga v shirokom diapazone temperatur i davleniy udarnogo szhatiya]. The Physics of Metals and Metallography, 2011, pp. 563-576.
36. Hu Jian-Bo, Yu Yu-Ying, Tan Hua, Dai Cheng-Da Effect of Anneal on the Release Behaviour of LY12-Al Alloy. Chinese Phys. Lett., 2006, vol. 23, no. 5, pp. 1265-1268. DOI: 10.1088/0256-307X/23/5/055
37. Jianxiang Peng, Fuqian Jing, Dahong Li. Pressure and Temperature Dependence of Shear Modulus and Yield Strength for Aluminum, Copper, and Tungsten Under Shock Compression. J. Appl. Phys., 2005, vol. 98, no. 1, id. 013508. DOI: 10.1063/1.1943510
38. Burakovsky L., Preston D.L. Generalized Guinan-Steinberg Formula for the Shear Modulus at All Pressures. Phys. Rev. B., 2005, vol. 71, no. 18, id. 184118. DOI: 10.1103/PhysRevB.71.184118