Volume 7, no. 1Pages 62 - 75 A Shock Capturing Method
V.F. KuropatenkoStrong discontinuities, or shocks in continua are a result of external dynamic loads. On the shock surface the conservation laws take the form of nonlinear algebraic equations for jumps across the shock. Entropy jumps across a strong discontinuity, and just this jump differs shocks from waves where the quantities vary continuously. In the heterogeneous difference schemes, the shock is treated as a layer of a finite thickness comparable with the cell size. This property of finite-difference schemes was called distraction. Since the state behind a shock is related to the state before it by the Hugoniot, in the distraction region there must act a mechanism that increases entropy. The physical viscosity and heat conductivity in continuum mechanics equations do not make it unnecessary to introduce a shock surface and hence cannot make the distraction length comparable with a few cells of the difference mesh. The paper considers a number of finite difference schemes where energy dissipation in the distraction region is defined by equations which are valid on the shock surface.
Full text- Keywords
- shock wave; differential method; distraction; energy dissipation; conservation laws.
- References
- 1. Kuropatenko V.F. Finite Difference Methods for Hydrodynamics Equations [O raznostnykh metodakh dlya uravneniy gidrodinamiki]. Trudy matematicheskogo instituta im. V.A. Steklova [Proceedings of the Steklov Institute of Mathematics], 1966, vol. 74, part 1, pp. 107-137.
2. Neumann J., Richtmayer R. A Method for the Numerical Calculation of Hydrodynamic Shocks. J. Appl. Phys., 1950, vol. 21, no. 3, pp. 232-237. DOI: 10.1063/1.1699639
3. Lax P.D. Weak Solution of Nonlinear Hyperbolic Equations and Their Numerical Computations. Comn. Pure and Appl. Math., 1954, vol. 7, pp. 159-193. DOI: 10.1002/cpa.3160070112
4. Godunov S.K. A Finite-Difference Method for Shock Calculation [Raznostnyy metod rascheta udarnykh voln]. Uspekhi Matematicheskikh Nauk [Russian Mathematical Surveys], 1957, no. 12, issue 1, pp. 176-177.
5. Kuropatenko V.F. A Shock Calculation Method. DAN SSSR, 1960, vol. 3, no. 4, pp. 771-772.
6. Rohzdestvensky B.l, Yanenko N.N. Sistemy kvazilineynykh uravneniy i ikh prilozheniya k gazovoy dinamike [Systems of Quasi-Linear Equations and Their Applications to Hydrodynamics]. Moscow, Nauka, 1968. 592 p.
7. Kuropatenko V.F., Makeyeva I.R. Discontinuity Distraction in Shock Calculation Methods [Issledovanie distraktsii razryvov v metodakh rascheta udarnykh voln]. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulations], 2006, vol. 18, no. 3, pp. 120-128.
8. Stupochenko E.V., Losev S.A., Osipov A.I. Relaksatsionnye protsessy v udarnykh volnakh [Relaxation Processes in Shock Waves]. Moscow, Nauka, 1965. 484 p.
9. Kuropatenko V.F, Makeyeva I.R. Raznostnyy metod rascheta udarnykh voln s povyshennymi svoystvami monotonnosti [A Higher-Monotonicity Finite-Difference Shock Capture Method]. VNIITF Preprint, 1997, no. 120.
10. Kuropatenko V.F. Local Conservatism of Difference Schemes for Hydrodynamics Equations [Lokal'naya konservativnost' raznostnykh skhem dlya uravneniy gazovoy dinamiki]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Computational Mathematics and Mathematical Physics], 1985, vol. 25, no. 8, pp. 1176-1188.
11. Kuropatenko V.F. Ultimate Conservatism of Finite-Difference Conservation Laws [O polnoy konservativnosti raznostnykh zakonov sokhraneniya]. Voprosy atomnoy nauki i tekhniki. Seriya: Chislennye metody resheniya zadach matematicheskoy fiziki [Atomic Science and Engineering. Series: Numerical Methods of Mathematical Physics], Moscow, 1982, issue 3 (11), pp. 3-5.
12. Kuropatenko V.F. Entropy Accuracy in Finite Difference Schemes for Hydrodynamics Equations [O tochnosti vychisleniya entropii v raznostnykh skhemakh dlya uravneniy gazovoy dinamiki]. Chislennye metody mekhaniki sploshnoy sredy [Numerical Methods for Continuum Mechanics], Novosibirsk, 1978, vol. 9, no. 7, pp. 49-59.
13. Kuropatenko V.F. Divergence and Conservatism of Finite-Difference Schemes for Hydrodynamics Equations [Svyaz' divergentnosti s konservativnost'yu raznostnykh skhem dlya uravneniy gazovoy dinamiki]. Voprosy atomnoy nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov [Atomic Science and Engineering. Series: Mathematical Modeling of Physical Processes], 1990, issue 2, pp. 63-69.
14. Kuropatenko V.F. Shock Calculation Methods [Metody rascheta udarnykh voln]. Entsiklopediya nizkotemperaturnoy plazmy. Seriya B. Matematicheskoe modelirovanie v nizkotemperaturnoy plazme [Encyclopedia of Low-Temperature Plasma. Series B. Mathematical Modelling of Low-Temperature Plasma], part 2, vol. VII-I, 2008, pp. 496-506.
15. Kuropatenko V.F. Modeli mekhaniki sploshnoy sredy [Continuum mechanics models]. Chelyabinsk, Chelyabinsk State University, 2007, 302 p.
16. Kuropatenko V.F., Dorovskikh I.A., Makeyeva I.R. The Properties of Finite Difference Schemes and Simulation of Dynamic Processes [O vliyanii svoystv raznostnykh skhem na matematicheskoe modelirovanie dinamicheskikh protsessov]. Vychislitel'nye tekhnologii [Computating Technologies], 2006, vol. 11, part 2, pp. 9-11.
17. Kuropatenko V.F., Kovalenko G.V., Kuznetsova V.I., Mikhaylova G.I. Complex Programs VOLNA and Method for Transient Flows of Continua [Kompleks programm VOLNA i neodnorodnyy raznostnyy metod dlya rascheta neustanovivshikhsya dvizheniy szhimaemykh sploshnykh sred]. Voprosy atomnoy nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov [Atomic Science and Engineering, Series: Mathematical Modeling of Physical Processes], 1989, issue 2, pp. 9-25.