Volume 7, no. 1Pages 76 - 89

Static and Dynamics of a Rod at the Longitudinal Loading

N.F. Morozov, P.E. Tovstik, T.P. Tovstik
A short review of works about static and dynamical stability of a thin rod under axial compression is given. By using linear static approach a critical compression has been found by L. Euler. In the paper of M.A. Lavrentiev and A.Y. Ishlinsky it has been established that at intensive loading which essentially exceeds the Eulerian one, the maximum growth of the lateral deflection corresponds to the mode with a large number of waves in the longitudinal direction. The following researches are connected with the longitudinal waves influence. The conditions of parametric resonances appearing and also the cases of stability loss under load less than the Eulerian one are found. Under quasi-linear approach the beating effect with energy transition from longitudinal vibrations into transversal ones and vice versa is established. At a long-time action of the load exceeding the Eulerian one both linear and quasi-linear approaches do not lead to finite values of transversal amplitude. That is why the non-linear approach is used and the growth of the post-critical deformations of the rod is studied. The connection of the deformation picture with the effect discovered by M.A. Lavrentiev and A.Y. Ishlinsky with the Eulerian elastics is marked.
Full text
Keywords
stability of rod; parametric resonance; beatings; Eulerian elastics.
References
1. Euler L. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti. Opera omnia: Opera mathematica, Springer, 1952.
2. Hutchinson W.J., Budiansky B. Dynamic Buckling Estimates. AIAA J., 1966, vol. 4, no. 3, pp. 527-530.
3. Knauss W.G., Ravi-Chandar K. Some Basic Problems in Stress Wave Dominated Fracture. Intern. J. Fracture, 1985, vol. 27, issue 3-4, pp. 127-143. DOI: 10.1007/BF00017963
4. Morozov N.F., Petrov Ju.V. Problemyi dinamiki razrusheniya [Problems of destruction dynamics]. St. Petersburg, St. Petersburg Univ. Press, 1997.
5. Bratov V.A., Morozov N.F., Petrov Yu.V. Dynamic Strength of Continuum. St. Petersburg, St. Petersburg Univ. Press, 2009.
6. Bolotin V.V. Dinamicheskaya ustoychivost' uprugikh sistem [Dynamical Stability of Elastic Systems]. Moscow, Nauka, 1956.
7. Vol'mir A.S. Stability of Compressed Rod at Dynamical Loading. [Ustoychivost' szhatykh sterzhney pri dinamicheskom nagruzhenii] Stroitelnaya mekhanica i raschet sooruzhenii, 1960, no. 1, pp. 69.
8. Lavrent'ev M.A., Ishlinsky A.Ju. Dynamical Modes of Stability Loss of Elastic Systems. [Dinamicheskie formy poteri ustoychivosti uprugikh sistem]. Dorlady Physics, 1949, vol. 64, no. 6, pp. 776-782.
9. Panovko Ya.G., Gubanova I.I. Stability and Vibrations of Elastic Systems [Ustoychivost' i kolebaniya uprugikh sistem]. Moscow, Nauka, 1987.
10. Vol'mir A.S. Stability of Elastic Systems [Ustoychivost' uprugikh sistem]. Moscow, GITTL, 1962.
11. Bolotin V.V. Poperechnye kolebaniya i kriticheskie skorosti. [Transversal Vibrations and Critical Velocities]. Izd. AN USSR, vol. 1 (1951), vol. 2 (1953).
12. Morozov N.F., Tovstik P.E. Dynamics of Rod at a Longitidinal Impact [Dinamika sterzhnya pri prodol'nom udare]. Vestnik St. Petersburg Univ. Ser. 1, 2009, no. 2, pp. 105-111.
13. Belyaev A.K., Il'in D.N., Morozov N.F. Dytamical Approach to the Ishlinsky-Lavrent'ev Problem. Mech. of Solids, 2013, vol. 48, no. 5, pp. 504-508. DOI: 10.3103/S002565441305004X
14. Morozov N.F., Tovstik P.E. The Rod Dynamics under a Short-Term Longitudinal Impact [Dinamika sterzhnya pri kratkovremennom prodol'nom udare]. Vestnik St. Petersburg Univ. Ser. 1, 2013, no. 3, pp. 131-141.
15. Morozov N.F., Tovstik P.E. Transverse Rod Vibrations under a Short-Term Longitudinal Impact. Doklady Physics, 2013, vol. 58, no. 9, pp. 387-391. DOI: 10.1134/S1028335813090024
16. Palmov V.A. Kolebaniya uprugoplasticheskikh tel [Vibrations of Elasto-Plastic Bodies]. Moscow, Nauka, 1976.
17. Lyapunov A.M. Obshchaya zadacha ob ustoychivosti dvizheniya [General Problem of a Motion Stability]. Moscow, Leningrad. Gostekhizdat, 1950.
18. Jakubovich V.A., Sterzhinsky V.M. Lineynye differentsial'nye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya [Linear Differential Equations with Periodic Coefficients and Their Applications]. Moscow, Nauka, 1972.
19. Ilukhin A.A. Prostranstvennye zadachi nelineynoy teorii uprugikh sterzhney [Space Problems of the Linear Theory of Elastic Rods]. Kiev, Naukova Dumka, 1979.