Volume 7, no. 2Pages 5 - 28

The Higher-Order Sobolev-Type Models

A.A. Zamyshlyaeva
This paper surveys the author's results concerning mathematical models based on Sobolev-type equations of higher order. The theory is built using the available facts on the solvability of initial (initial-final) problems for first-order Sobolev-type equations. The main idea is a generalization of the theory of degenerate (semi)groups of operators to the case of higher-order equations: decomposition of spaces and actions of the operators, construction of propagators and the phase space for the homogeneous equation, as well as the set of valid initial values for the inhomogeneous equation. We use the phase space method, which is quite useful for solving Sobolev-type equations and consists in a reduction of a singular equation to a regular one defined on a certain subspace of the original space. We reduce mathematical models to initial (initial-final) problems for abstract Sobolev-type equations of higher order. The results may find further applications in the study of optimal control problems and nonlinear mathematical models, and to the construction of the theory of Sobolev-type equations of higher order in quasi-Banach spaces.
Full text
Sobolev-type equations; phase space; propagators; initial-final problem; relative spectrum.
1. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, Boston, Koln, Tokyo, VSP, 2003. DOI: 10.1515/9783110915501
2. Cristiansen P.L., Muto V., Lomdahl P.S. On a Toda Lattice Model with a Transversal Degree of Freedom. Nonlinearity, 1990, no. 4, pp. 477-501.
3. Boussinesq J.V. Essai sur la theorie des eaux courantes. Mem. Pesentes Divers Savants Acad. Sci. Inst. France, 1877, no. 23, pp. 1-680.
4. Ladyzhenskaya O.A. Matematicheskie voprosy dinamiki vyazkouprugoy neszhimaemoy zhidkosti [Mathematical Problems in the Dynamics of a Viscoelastic Incompressible Fluid]. Moscow, Fizmatgiz, 1961.
5. Temam R. Navier - Stokes Equations. Theory and Numerical Analysis. Amsterdam, N.-Y., Oxford, North Holland Publ. Co., 1979.
6. Barenblatt G.I., Zheltov Yu.P., Kochina I.N. Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissurized Rocks. tJ. Applied Mathematics and Mechanics (PMM), 1960, vol. 24, no. 4, pp. 1268-1303.
7. Chen P.J., Gurtin M.E. On a Theory of Heat Conduction Involving Two Temperatures. Z. Angew. Math. Phys., 1968, vol. 19, pp. 614-627. DOI: 10.1007/BF01594969
8. Oskolkov A.P. Nonlocal Problems for One Class of Nonlinear Operator Equations that Arise in the Theory of Sobolev Type Equations. tJournal of Mathematical Sciences, Nauka, St. Petersburg, 1993, vol. 64, issue 1 pp. 724-736.
9. Poincare H. Sur l'equilibre d'une mass fluide animee d'un mouvement de rotation. Acta Math., 1885, vol. 7, pp. 259-380. DOI: 10.1007/BF02402204
10. Sobolev S.L. [On a New Problem of Mathematical Physics]. tIzvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya, 1954, vol. 18, issue 1, pp. 3-50. (in Russian)
11. Demidenko G.V., Uspenskii S.V. Partial Differential Equations and Systems not Solvable with Respect to the Highest Order Derivative. N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 2003.
12. Showalter R.E. Hilbert Space Methods for Partial Differential Equations. Pitman, London, San Francisco, Melbourne, 1977.
13. Favini A., Yagi A. Degenerate Differential Equations in Banach Spaces. N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 1999.
14. Sidorov N., Loginov B., Sinithyn A., Falaleev M. Lyapunov - Shmidt Methods in Nonlinear Analysis and Applications. Dordrecht, Boston, London, Kluwer Academic Publishers, 2002. DOI: 10.1007/978-94-017-2122-6
15. Al'shin A.B., Korpusov M.O., Sveshnikov A.G. Blow-up in Nonlinear Sobolev Type Equations. Series in Nonlinear Analisys and Applications, 15, De Gruyter, 2011. DOI: 10.1515/9783110255294
16. Kozanov A.I. Kraevye zadachi dlya uravneniy matematicheskoy fiziki nechetnogo poryadka [Boundary Value Problems for Equations of Mathematical Physics Odd Order]. Novosibirsk, NSU, 1990.
17. Pyatkov S.G. Operator Theory. Nonclassical Problems. Utrecht, Boston, K'oln, Tokyo, VSP, 2002. DOI: 10.1515/9783110900163
18. Sviridyuk G.A., Zamyshlyaeva A.A. The Phase Spaces of a Class of Linear Higher-Order Sobolev Type Equations. Differential Equations, 2006, vol. 42, no. 2, pp. 269-278. DOI: 10.1134/S0012266106020145
19. Zamyshlyaeva A.A. [Phase Spaces of Class Linear Equations of Second Order Sobolev Type]. Vychislitel'nye tekhnologii [Computational Technologies], 2003, vol. 8, no. 4, pp. 45-54. (in Russian)
20. Zamyshlyaeva A.A. [The Phase Space of Sobolev Type Equations of High Order]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya 'Matematika' [The Bulletin of Irkutsk State University. Series 'Mathematics'], 2011, vol. 4, no. 4, pp. 45-57. (in Russian)
21. Gabov S.A. Novye zadachi matematicheskoy teorii voln [New Problems of Mathematical Theory of Waves]. Moscow, FIZMATLIT, 1998.
22. Benney D.J., Luke J.C. Interactions of Permanent Waves of Finite Amplitude. J. Math. Phys., 1964, no. 43, pp. 309-313.
23. Love A.E.H. A Treatise on the mat Ematical Theory of Elasticity. Cambridge, at the university press, 1927.
24. Sviridyuk G.A., Zagrebina S.A. [The Showalter - Sidorov Problem as a Phenomena of the Sobolev Type Equations]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya 'Matematika' [The Bulletin of Irkutsk State University. Series 'Mathematics'], 2010, vol. 3, no. 1, pp. 104-125. (in Russian)
25. Zagrebina S.A. [Initial-Final Problems for Sobolev Type Equations with Strongly (L, p)-Radial Operator]. Mathematical Notes of YSU, 2012, vol. 19, no. 2, pp. 39-48. (in Russian)
26. Sviridyuk G.A., Shemetova V.V. [Barenblatt - Jeltov - Cochina Equations on the Graph]. Vestnik Magnitogorskogo gosudarstvennogo universiteta. Seria 'Matematika', [Bulletin of Magnitogorsk State University. Series 'Mathematics'], 2003, issue 4, pp. 129-139. (in Russian)
27. Sviridyuk G.A. On a Model of the Dynamics of a Weakly Compressible Viscoelastic Fluid. Russian Mathematics (Izvestiya VUZ. Matematika), 1994, vol. 38, no. 1, pp. 59-68.
28. Sviridyuk G.A., Ankudinov A.V. The Phase Space of the Cauchy - Dirichlet Problem for a Nonclassical Equation. Differential Equations, 2003, vol. 39, no. 11, pp. 1639-1644. DOI: 10.1023/B:DIEQ.0000019357.68736.15
29. Zamyshlyaeva A.A. Linear Sobolev Type Equations of High Order. Chelyabinsk, Publ. Center of the South Ural State University, 2012. (in Russian)
30. Sagadeeva M.A. Dichotomy of Solutions of Linear Sobolev Type Equations. Chelyabinsk, Publ. Center of the South Ural State University, 2012. (in Russian)
31. Zamyshlyaeva A.A., Tsyplenkova O.N. Optimal Control of Solutions of the Showalter - Sidorov - Dirichlet Problem for the Boussinesq - Love Equation. Differential Equations, 2013, vol. 49, no. 11, pp. 1356-1365. DOI: 10.1134/S0012266113110049
32. Manakova N.A. Optimal Control Problem for the Sobolev Type Equations. Chelyabinsk, Publ. Center of the South Ural State University, 2012. (in Russian)
33. Keller A.V., Nazarova E.I. [Optimal Measurement Problem: Numerical Solution, Algorithm of the Program]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya 'Matematika' [The Bulletin of Irkutsk State University. Series 'Mathematics'], 2011, no. 3, pp. 74-82. (in Russian)
34. Sviridyuk G.A., Brychev S.V. Numerical Solution of Systems of Equations of Leontief Type. Russian Mathematics (Izvestiya VUZ. Matematika), 2003, vol. 47, no. 8, pp. 44-50.
35. Sviridyuk G.A., Burlachko I.V. An Algorithm for Solving of the Cauchy Problem for Degenerate Linear Systems of Ordinary Differential Equations. Computational Mathematics and Mathematical Physics, 2003, vol. 43, no. 11, pp. 1613-1619.
36. Shestakov A.L., Sviridyuk G.A., Zakharova E.V. [Dynamical Measurements as an Optimal Control Problem]. Obozrenie prikladnoy i promyshlennoy matematiki, 2009, vol. 16, no. 4, pp. 732. (in Russian)
37. Shestakov A.L., Keller A.V., Nazarova E.I. Numerical Solution of the Optimal Measurement Problem. Automation and Remote Control, 2012, vol. 73, no. 1, pp. 97-104. DOI: 10.1134/S0005117912010079
38. Zamyshlyaeva A.A., Bychkov E.V. [Numerical Study of the Mathematical Model of Shallow Water Wave Propagation]. Mathematical Notes of YSU, 2013, vol. 20, no. 1, pp. 27-34. (in Russian)
39. Zamyshlyaeva A.A. [An Algorithm for the Numerical Modelling of the Boussinesq - Love Waves]. Bulletin of the South Ural State University. Series 'Computer Technologies, Automatic Control, Radioelectronics', 2013, vol. 13, no. 4, pp. 24-29. (in Russian)
40. Zamyshlyaeva A.A. [Analytical Study of the Boussinesq - Love Mathematical Model with Additive White Noise]. Global'nyy nauchnyy potentsial (Razdel matematicheskie metody i modeli) [Global Scientific Resources (Section Mathematical Methods and Models)], 2013, no. 7 (28), pp. 44-50. (in Russian)
41. Zamyshlyaeva A.A. [Stochastic Mathematical Model of Ion-Acoustic Waves in Plasma]. Estestvennye i tekhnicheskie nauki (Razdel matematicheskoe modelirovanie, chislennye metody i kompleksy programm) [Natural and Technical Sciences (Section Mathematical Modelling, Numerical Methods and Complexes of Programs], 2013, no. 4, pp. 284-292. (in Russian)
42. Zamyshlyaeva A.A. [De Gennes Equation of Sound Waves in Smectic]. Obozrenie prikladnoy i promyshlennoy matematiki, 2009, vol. 16, issue 4, pp. 655-656. (in Russian)
43. Zamyshlyaeva A.A. [An Analytical Study of the Linearized Benny - Luke Mathematical Model]. Mathematical Notes of YSU, 2013, vol. 20, no. 2, pp. 57-65. (in Russian)
44. Zamyshlyaeva A.A., Yuzeeva A.V. [Initial-Final Problem for the Boussinesq - Love Equation on a Graph]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya 'Matematika' [The Bulletin of Irkutsk State University. Series 'Mathematics'], 2010, vol. 3, no. 2, pp. 18-29. (in Russian)
45. Fedorov V.E [About Some Relations in the Theory of Degenerate Operator Semigroups]. Bulletin of the South Ural State University. Series 'Mathematical Modelling, Programming & Computer Software', 2008, no. 15 (115), issue 7, pp. 89-99. (in Russian)