Volume 7, no. 4Pages 22 - 35

A Model of Incentive Wages as an Optimal Control Problem

E.A. Aleksandrova, S.A. Anikin
This articles considers a 'shirking', model under the theory of efficiency contracts, which determines the profile of a worker's individual wages depending on his experience. The profile is a stimulating condition to increase productivity and the period of employment. Certain additional assumtions reduce the model to a nonclassical variational problem or a linear optimal control problem. We prove nonemptiness criteria and the existence of solutions, find necessary and sufficient conditions for optimality, give an algorithm to solve the problem, and present the results of simulations.
Full text
'shirking', model; an efficiency contract model; an efficiency wage model; incentive wages; nonclassical variational problem; linear optimal control problem.
1. Ehrenberg R.J., Smith R.S. Modern Labor Economics: Theory and Public Policy. Pearson Education, Inc., 2009.
2. Milgrom P., Roberts J. Economics, Organization and Management Englewood Cliffs. N.J., Prentice-Hall, 1992.
3. Gibbons, R. Incentives Between Firms (and Within). Management Science, 2005, vol. 51, no. 1, pp. 2-17. DOI: 10.1287/mnsc.1040.0229
4. Lazear E. Agency, Earnings Profiles, Productivity, and Hours Restrictions. The American Economic Review, September, 1981, pp. 606-620.
5. Belyaeva M.G. Rabotnik i rabotodatel'. Teoriya i praktika kontraktnykh otnosheniy [The Employee and Employer. The Theory of Contractual Relations]. Samara, Izd-vo SNC RAN, 2008.
6. Smirnykh L.I. Prodolzhitel'nost' zanyatosti i trudovaya mobil'nost' [The Duration of Employment and Labor Mobility]. Moscow, TEIS, 2003.
7. Kalabina E.G. Evolutsiya sistemy otnosheniy 'rabotnik - rabotodatel' v economicheskoy organizatsii [Evolution of Relations 'the Employee - Employer' in the Economic Organization]. Yekaterinburg, Institut Economiki UrO RAN, 2011.
8. Popov Е., Simonova V. [Evaluation of Intra-Firm Opportunism of Employees and Managers]. Problemy teorii i praktiki upravleniya, 2005, vol. 4, pp. 108-117. (in Russian)
9. Ioffe А.D., Tikhomirov V.М. Teoriya extremal'nykh zadach [Theory of Extremal Problems]. Moscow, Nauka, 1974.
10. Sobolev S.L. Nekotorye primeneniya funktsional'nogo analiza v matematichesoy fizike [Some Applications of Functional Analysis in Mathematical Physics]. Moscow, Nauka, 1988.
11. Lions J.L. Controle Optimal de Systemes Gouvernes par des Equations aux Derivecs Partielles. Paris, Dunod Gauthier-Villars, 1968.
12. Sviridyuk G.A., Efremov A.A. An Optimal Control Problem for One Class of Linear Sobolev Type Equations. Russian Mathematics (Izvestiya VUZ. Matematika), 1996, vol. 40, no. 12, pp. 60-71.
13. Vasil'ev F.P. Metody resheniya extremal'nykh zadach [Methods for Solving Extreme Problems]. Moscow, Nauka, 1981.