Volume 8, no. 3Pages 78 - 94

Double Logarithmic Stability in the Identification of a Scalar Potential by a Partial Elliptic Dirichlet-to-Neumann Map

M. Choulli, Y. Kian, E. Soccorsi
We examine the stability issue in the inverse problem of determining a scalar potential appearing in the stationary Schrodinger equation in a bounded domain, from a partial elliptic Dirichlet-to-Neumann map. Namely, the Dirichlet data is imposed on the shadowed face of the boundary of the domain and the Neumann data is measured on its illuminated face. We establish a log log stability estimate for the L^2-norm (resp. the H^{-1}-norm) of H^t, for t>0, and bounded (resp. L^2) potentials.
Full text
inverse problem; stability; Schrodinger equation.
1. Lions J.-L., Magenes E. Non-Homogenuous Boundary Value Problems and Applications. I. Springer, Berlin, 1972.
2. Calderon A. On an Inverse Boundary Problem. Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matematica, Rio de Janeiro, 1980, pp. 65-73.
3. Sylvester J., Uhlmann G. A Global Uniqueness Theorem for an Inverse Boundary Value Problem. Ann. of Math., 1987, vol. 125, pp. 153-169. DOI: 10.2307/1971291
4. Alessandrini G. Stable Determination of Conductivity by Boundary Measurements. Appl. Anal., 1988, vol. 27, pp. 153-172. DOI: 10.1080/00036818808839730
5. Mandache N. Exponential Instability in an Inverse Problem for the Schrodinger Equation. Inverse Problems, 2001, vol. 17, pp. 1435-1444. DOI: 10.1088/0266-5611/17/5/313
6. Bukhgeim A.L., Uhlmann G. Recovering a Potential from Partial Cauchy Data. Commun. Part. Diff. Equat., 2002, vol. 27, pp. 653-658. DOI: 10.1081/PDE-120002868
7. Kenig C.E., Sjostrand J., Uhlmann G. The Calderon Problem with Partial Data. Ann. of Math., 2007, vol. 165, pp. 567-791. DOI: 10.4007/annals.2007.165.567
8. Nachman A., Street B. Reconstruction in the Calderon Problem with Partial Data. Commun. Part. Diff. Equat., 2010, vol. 35, pp. 375-390. DOI: 10.1080/03605300903296322
9. Heck H., Wang J.-N. Stability Estimate for the Inverse Boundary Value Problem by Partial Cauchy Data. Inv. Probl., 2006, vol. 22, pp. 1787-1797. DOI: 10.1088/0266-5611/22/5/015
10. Caro P., Dos Santos Ferreira D., Ruiz A. Stability Estimates for the Calder' on Problem with Partial Data. arXiv:1405.1217.
11. Caro P., Dos Santos Ferreira D., Ruiz A. Stability Estimates for the Radon Transform with Restricted Data and Applications. arXiv:1211.1887v2.
12. Apraiz J., Escauriaza L., Wang G., Zhang C. Observability Inequalities and Measurable Sets. arXiv:1002.4876.
13. Alessandrini G., Gaburro R. The Local Calderon Problem and the Determination at the Boundary of the Conductivity. Commun. Partial Differ. Equat., 2009, vol. 34, no. 8, pp. 918-936. DOI: 10.1080/03605300903017397
14. Dautray R., Lions J.-L. Mathematical Analysis and Numerical Methods for Science and Technology. II. Berlin, Springer-Verlag, 1988. DOI: 10.1007/978-3-642-61566-5