Volume 9, no. 1Pages 59 - 72 Investigation of the Unsteady-State Hydraulic Networks by Means of Singular Systems of Integral Differential Equations
E.V. Chistyakova, Nguyen Duc BangAnalysis of complex hydraulic networks, electric circuits, electronic schemes, chemical processes etc. often results in a system of interconnected differential and algebraic equations. If the process under study has after-effect, then the system includes integral equations. This paper addresses simulation of hydraulic networks by means of the theory for singular systems of integral differential equations. We present theoretical tools that help investigate qualitative properties of such systems and search for effective methods of solution. A mathematical model for the straight through boiler circuit has been developed and a numerical method for its solution has been constructed. Experimental results showed that the theory for singular systems of integral differential equations performs well when applied to simulation of the hydraulic networks.
Full text- Keywords
- differential-algebraic equations; integral-algebraic equations; hydraulic network; hydraulic circuit; index; numerical methods.
- References
- 1. Brenan K.E., Campbell S.L., Petzold L.R. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics. Vol. 14. Philadelphia, SIAM, 1996. 256 p. DOI: 10.1137/1.9781611971224
2. Boyarinsev YU.E. Regulyarnye i singuliyarnye sistemy lineynyh obyknovennyh differencial'nyh uravneniy [Regular and Singular Systems of Linear Ordinary Differential Equations]. Novosibirsk, Nauka, 1980. 222 p.
3. Chistyakov V.F. Algebro-differencial'ye operatory co konechnym yadrom [Algebraic-Differential Operators with Finite Kernel]. Novosibirsk, Nauka, 1996. (in Russian)
4. Ushakov E.I. Staticheckaya uctoichivoch elektricheskih sistem [Static Stability of Power Systems]. Novosibirsk, Nauka, 1988. (in Russian)
5. Balyshev O.A., Tairov E.A. Analis perehodnyh i stacionarnyh processov v truboprovodnyh sistemah [Analysis of Transient and Steady-State Processes in Pipeline Systems]. Novosibirsk, Nauka, 1999. 164 p. (in Russian)
6. Sviridyuk G.A. Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type. Russian Academy of Sciences. Izvestiya Mathematics 1993, vol. 57, no. 3, p. 601-614. DOI: 10.1070/IM1994v042n03ABEH001547
7. Sviridyuk G.A., Zagrebina S.A. Verigin's Problem for Linear Equations of the Sobolev Type with Relatively p-Sectorial Operators. Differential Equations, 2002, vol. 38, no. 12, pp. 1745-1752.
8. Manakova N.A., Bogatyreva E.A. On the Solution of the Dirichlet Problem for the Cauchy - Barenblatt - Gilman. The Bulletin of Irkutsk State University. Series: Mathematics, 2014, vol. 7, pp. 52-60. (in Russian)
9. Merenkov A.P., Hasilev V.Ya. Teoriya gidravlichekih cepey [Theory of Hydraulic Circuits], Moscow, Nauka, 1985. 277 p. (in Russian)
10. Chistyakova E.V., Levin A.A., Chistyakov V.F. [Analysis of the Hydraulic Circuits in the Quasi-Unsteady Mode]. Matematicheskoye modelirovanie truboprovodnyh sistem energetiki: trudy XII vserossiiskogo nauchnogo seminara s mezhdunarodnym uchastiem 'Matematicheskie modeli i metody analiza i optimalnogo sinteza razvivayushchihsya truboprovodnyh i gidravlicheskih sistem'. Irkutsk, MESI SB RAS, 2010. pp. 17-27
11. Levin A.A., Tairov E.A., Chistyakov V.F. [Solutions of Powerflow in the Coal Pulverization System]. Matematicheskoye modelirovanie truboprovodnyh sistem energetiki: trudy XII vserossiiskogo nauchnogo seminara s mezhdunarodnym uchastiem 'Matematicheskie modeli i metody analiza i optimalnogo sinteza razvivayushchihsya truboprovodnyh i gidravlicheskih sistem'. Irkutsk, MESI SB RAS, 2010. pp. 27-39
12. Demidovich B.P. Lekcii po teorii matematicheskoy ustoychivosti [Lectures on Mathematical Theory of Stability]. Мoscow, Nauka, 1967.
13. Gantmacher F.R. The Theory of Matrices. N.Y., Chelsea Publishing Company, 1959.
14. Chistyakov V.F. [On a Rough Index of Nonlinear Differential-Algebraic Systems]. Trudy XII Baikal'skoy mezdunarodnoy konferencii 'Metody optimizacii i ih prilozeniya' II, Irkutsk, 2001, pp. 213-218.
15. Hassard B.D., Kazarinoff N.D., Wan Y.-H. Theory and Applications of Hopf Bifurcation. Cambridge, London, N.Y., Rochelle, Melbouren, Sydney, Cambridge University Press, 1981.
16. Bulatov M.V. Transformation of Algebro-Differential Systems of Equations. Computational Mathematics and Mathematical Physics 1994, vol. 34, no. 3, pp. 301-311.
17. Chistyakov V.F., Chistyakov E.V. On the Existence of Periodic Solutions of Differential-Algebraic Equations. Sib. Zh. Ind. Mat., 2006, vol. 9, no. 3, pp. 148-158.
18. Keller A.V. Issledovanie ogranichennyh risheniy lineynyh uravneniy tipa Soboleva [The study of Bounded Solutions of Linear Equations of Sobolev Type. Dissertation of the Candidate of Physical and Mathematical Sciences]. Chelyabinsk, 1997, 115 p.
19. Sagadeeva M.A., Fedorov V.E. Solutions, Bounded on the Line, of Sobolev-Type Linear Equations with Relatively Sectorial Operators. Russian Mathematics (Izvestiya VUZ. Matematika), 2005, vol. 49, no. 4, pp. 77-80.
20. Chistyakov E.V., Chistyakov V.F. On the Solvability of Degenerate Quasilinear Systems of Integro-Differential Equations of the General Form. Computational Technologies, 2011, vol. 16, no. 5, pp. 100-114. (in Russian)