Volume 10, no. 1Pages 70 - 96 New Results on Complete Elliptic Equations with Robin Boundary Coefficient-Operator Conditions in Non Commutative Case
M. Cheggag, A. Favini, R. Labbas, S. Maingot, Kh. Ould MelhaIn this paper, we prove some new results on operational second order differential equations of elliptic type with general Robin boundary conditions in a non-commutative framework. The study is performed when the second member belongs to a Sobolev space. Existence, uniqueness and optimal regularity of the classical solution are proved using interpolation theory and results on the class of operators with bounded imaginary powers. We also give an example to which our theory applies. This paper improves naturally the ones studied in the commutative case by M. Cheggag, A. Favini, R. Labbas, S. Maingot and A. Medeghri: in fact, introducing some operational commutator, we generalize the representation formula of the solution given in the commutative case and prove that this representation has the desired regularity.
Full text- Keywords
- second-order elliptic differential equations; Robin boundary conditions in non commutative cases; analytic semigroup; maximal regularity.
- References
- 1. Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Elliptic Problems with Robin Boundary Coefficient-Operator Conditions in General L_p Sobolev Spaces and Applications. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 3, pp. 56-77. DOI: 10.14529/mmp150304
2. Favini A., Labbas R., Maingot S., Meisner M. Study of Complete Abstract Elliptic Differential Equations in Non Commutative Cases. Applicable Analysis, 2012, vol. 91, issue 8, pp. 1495-1510. DOI: 10.10801.00036811.2011.635652
3. Favini A., Labbas R., Maingot S., Meisner M. Boundary Value Problem For Elliptic Differential Equations in Non-Commutative Cases. Discrete and Continuous Dynamics System. Series A, 2013, vol. 33, issue 11-12, pp. 4967-4990. DOI: 10.3934/dcds.2013.33.4967
4. Pruss J., Sohr H. On Operators with Bounded Imaginary Powers in Banach Spaces. Mathematische Zeitschrift, 1990, vol. 203, issue 3, pp. 429-452.
5. Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Complete Abstract Differential Equations of Elliptic Type with General Robin Boundary Conditions, in UMD Spaces. Discrete and Continuous Dynamics System. Series S, 2011, vol. 4, no. 3, pp. 523-538. DOI: 10.3934/dcdss.2011.4.523
6. Grisvard P. Spazi di tracce ed applicazioni. Rendiconti di matematica. Serie VI, 1972, vol. 5, pp. 657-729. (in Italian)
7. Meisner M. Etude unifiee d'equations aux derivees partielles de type elliptique regies par des equations differentielles a coefficients operateurs dans un cadre non commutatif: applications concretes dans les espaces de Holder et les espaces L^p. These de doctorat de l'Universite du Havre, 2012.
8. Dore G., Venni A. On the Closedness of the Sum of Two Closed Operators. Mathematische Zeitschrift, 1987, vol. 196, issue 2, pp. 189-201. DOI: 10.1007/BF01163654
9. Favini A., Labbas R., Maingot S., Tanabe H., Yagi A. A Simplified Approach in the Study of Elliptic Differential Equation in UMD Space and New Applications. Funkcialaj Ekvacioj, 2008, vol. 51, no. 2, pp. 165-187.
10. Favini A., Labbas R., Maingot S., Tanabe H., Yagi A. Complete Abstract Differential Equation of Elliptic Type in UMD Spaces. Funkcialaj Ekvacioj, 2006, vol. 49, no. 2, pp. 193-214.
11. Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Basel, Birkhauser, 1995.
12. Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam, N.Y., Oxford, North-Holland, 1978.
13. Dore G. L^p Regularity for Abstract Differential Equation. Functional Analysis and Related Topics. Kyoto 1991. Lecture Notes in Mathematics. Vol. 1540. 1993, Berlin, Springer-Verlag, pp. 25-38. DOI: 10.1007/BFb0085472