Volume 10, no. 1Pages 138 - 148 Mathematical Modelling of Hereditarity Airy Oscillator with Friction
R.I. ParovikWork is devoted to mathematical modelling hereditarity oscillatory systems with the help of the mathematical apparatus of fractional calculus on the example of an Airy oscillator with friction. Model Airy equation was written in terms of Gerasimov - Caputo fractional derivatives. Next a finite-difference scheme to this generalized equation for numerical computation was proposed. The problems of approximation, stability and convergence of a numerical scheme are considered. The results of simulations are presented based on numerical solutions waveforms and phase trajectories depending on different values of the control parameters are built.
Full text- Keywords
- Airy oscillator; hereditarity; Gerasimov - Caputo derivative; finite-difference scheme; the phase trajectory.
- References
- 1. Uchaikin V.V. Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory. Beijing, Berlin, Higher Education Press, Springer-Verlag, 2013. 373 p. DOI: 10.1007/978-3-642-33911-0
2. Volterra V. Theory of Functionals and of Integral and Integro-Differential Equations. N.Y., DOVER, 1959. 304 p.
3. Airy G.B. On the Intensity of Light in the Neighbourhood of a Caustic. Transactions of the Cambridge Philosophical Society, 1838, vol. 6, pp. 379-402.
4. Honina S.N., Volotovskij S.G. Mirror Laser Airy Beams. Computer Optics, 2014, vol. 34, no. 2, pp. 203-213. (in Russian)
5. Oldham K.B., Spanier J. The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. London, Academic Press, 1974. 240 p.
6. Miller K.S., Ross B. An Introduction to the Fractional Calculus and Fractional Differntial Equations. N.Y., Wiley-Interscience Publication, 1993. 384 p.
7. Parovik R.I. [Mathematical Modelling of Linear Oscillators Hereditarity]. Petropavlovsk-Kamchatskiy, Kamchatskiy Gosudarstvennyy Universitet Imeni Vitusa Beringa, 2015. 178 p.
8. Parovik R.I. Cauchy Problem of Generalized Airy Equation. Doklady Adygskoy (Cherkesskoy) mezhdunarodnoy akademii nauk [Reports Adyghe (Circassian) International Academy of Sciences], 2014, vol. 16, no 3, pp. 64-69. (in Russian)
9. Kilbas A.A., Srivastava H.M., Trujillo. J.J. Theory and Applications of Fractional Differential Equations. N.Y., Elsevier Science, 2006. 523 p. DOI: 10.1016/0960-0779(95)00125-5
10. Mainardi F. Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena. Chaos, Solitons & Fractals, 1996, vol. 7, no. 9, pp. 1461-1477.
11. Afanas'ev V.V., Danilaev M.P., Pol'skij Yu.E. Stabilizatsiya fraktal'nogo ostsillyatora inertsial'nymi vozdeystviyami [Stabilization of Fractal Oscillator Inertial Effects]. Technical Physics Letters, 2010, vol. 36, no. 7, pp. 1-6. (in Russian)
12. Petras I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Beijing, Berlin, Heidelberg, Higher Education Press, Springer, 2011. 218 p. DOI: 10.1007/978-3-642-18101-6
13. Tavazoei M.S., Haeri M. Chaotic Attractors in Incommensurate Fractional Order Systems. Physica D: Nonlinear Phenomena, 2008, vol. 237, no. 20, pp. 2628-2637. DOI: 10.1016/j.physd.2008.03.037
14. Rossikhin Y.A., Shitikova M.V. Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results. Applied Mechanics Reviews, 2010, vol. 63, no. 1, pp. 010801. DOI: 10.1115/1.4000563
15. Samarskij A.A., Gulin A.V. Ustojchivost' Raznostnyh Shem [The Stability of Difference Schemes]. Мoscow, Nauka, 1973. 415 p.
16. Parovik R.I. Numerical Analysis Some Oscillation Equations with Fractional Order Derivatives. Bulletin KRASEC. Physical and Mathematical Sciences, 2014, vol. 9, no. 2, pp. 34-38. DOI: 10.18454/2313-0156-2014-9-2-34-38
17. Xu Y., Suat Erturk V. A Finite Difference Technique for Solving Variable-Order Fractional Integro-Differential Equations. Bulletin of the Iranian Mathematical Society, 2014, vol. 40, no. 3, pp. 699-712.