Volume 10, no. 4Pages 15 - 25

Stationary Electrochemical Machining Simulation Applying to Precision Technologies

V.P. Zhitnikov, N.M. Sherykhalina, S.S. Porechny
The modification of statement of electrochemical formation problem is offered for mathematical modelling of the precision technologies. As an example the process of cutting with a plate electrode-tool is considered. For the description of the technologies with high localization of the processes a stepwise function of current efficiency is used. It realizes for simulation of the anode dissolution process in passivating electrolytes under short impulse current. This function determines the movement rate of the anode boundary in the areas of an active electrochemical dissolution and also it defines the boundaries of the areas where dissolution is absent. The stationary and limiting-stationary machining problems are formulated and solved on the base of the offered model. The limiting model describes the maximum localization process. The stationary problem is characterized by the presence of anode surface part, on which the current density is equal to a critical value. Investigations in the whole range of ratio of the maximal and critical values of electrical field strength on the anode surface are carried out.
Full text
Keywords
electrochemical shaping; stepwise function; process localization; stationary model.
References
1. McGeough J.A. Principles of Electrochemical Machining. London, Chapman and Hall Ltd., 1974.
2. Davydov A.D., Kozak E. Vysokoskorostnoe jelektrohimicheskoe formoobrazovanie [High Speed Electrochemical Shaping]. Moscow, Nauka, 1990.
3. Datta M., Landolt D. Fundamental Aspects and Applications of Electrochemical Microfabrication. Electrochimica Acta, 2000, vol. 45, pp. 2535-2558. DOI: 10.1016/S0013-4686(00)00350-9
4. Rajurkar K.P., Sundaram M.M., Malshe A.P. Review of Electrochemical and Electrodischarge Machining. Procedia CIRP, 2013, vol. 6, pp. 13-26. DOI: 10.1016/j.procir.2013.03.002
5. Kenney J.A., Hwang G.S. Electrochemical Machining with Ultrashort Voltage Pulses: Modelling of Charging Dynamics and Feature Profile Evolution. Nanotechnology, 2005, vol. 16, no. 7, pp. 309-313. DOI: 10.1088/0957-4484/16/7/001
6. Rajurkar K.P., Levy G., Malshe A., Sundaram M.M., McGeough J., Hu X., Resnick R., DeSilva A. Micro and Nano Machining by Electro-Physical and Chemical Processes. CIRP Annals - Manufacturing Technology, 2006, vol. 55, pp. 643-666. DOI: 10.1016/j.cirp.2006.10.002
7. Forster R., Schoth A., Menz W. Micro-ECM for Production of Microsystems with a High Aspect Ratio. Microsystem Technologies, 2005, vol. 11, pp. 246-249. DOI: 10.1007/s00542-004-0374-7
8. Idrisov T.R., Zaitsev A.N., Zhitnikov V.P. Estimation of the Process Localization at the Electrochemical Machining by Microsecond Pulses of Bipolar Current. Journal of Materials Processing Technology, 2004, vol. 149, pp. 479-485. DOI: 10.1016/j.jmatprotec.2003.10.049
9. Klokov V.V. Jelektrohimicheskoe formoobrazovanie [Electrochemical Shaping]. Kazan, Kazan State University, 1984.
10. Sedykin F.V., Orlov B.P., Matasov V.F. [Investigation of the Anode Current Efficiency at Electrochemical Machining Using Steady and Pulse Voltage]. Tehnologija mashinostroenija [Engineering Technology], 1975, vol. 39, pp. 3-10. (in Russian)
11. Mannapov A.R., Zhitnikov V.P., Porechny S.S. Semi-Empirical Mathematical Model of the Nonstationary Process of Pulse Electrochemical Machining with Vibrating Electrode-Tool at Locally One-Dimensional Approximation. Vestnik USATU (scientific journal of Ufa State Aviation Technical University), 2011, vol. 15, no. 3, pp. 60-66. (in Russian)
12. Kotlyar L.M., Minazetdinov N.M. Anode Shape Determination with Allowance for Electrolyte Properties in Problems of Dimensional Electrochemical Machining of Metals. Journal of Applied Mechanics and Technical Physics, 2003, vol. 44, pp. 450-454. DOI: 10.1023/A:1023405928574
13. Karimov A.H., Klokov V.V., Filatov E.I. Metody rascheta jelektrohimicheskogo formoobrazovanija [Methods of Electrochemical Machining Calculation]. Kazan, Kazan State University, 1990.
14. Volgin V.M., Lyubimov V.V., Gnidina I.V., Davydov A.D., Kabanova T.B. Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode. Procedia CIRP, 2016, vol. 55, pp. 65-70. DOI: 10.1016/j.procir.2016.08.031
15. Zhitnikov V.P., Oshmarina E.M., Fedorova G.I. The Use of Discontinuous Functions for Modeling the Dissolution Process of Steady-State Electrochemical Shaping. Russian Mathematics, 2010, vol. 54, no. 10, pp. 67-70. DOI: 10.3103/S1066369X10100099
16. Kotlyar L.M., Minazetdinov N.M. Modeling of Electrochemical Machining with the Use of a Curvilinear Electrode and a Stepwise Dependence of the Current Efficiency on the Current Density. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, pp. 127-135. DOI: 10.1134/S0021894416010144