Volume 11, no. 1Pages 95 - 108

New Approximate Method for Solving the Stokes Problem in a Domain with Corner Singularity

V.A. Rukavishnikov, A.V. Rukavishnikov
In this paper we introduce the notion of an R_u-generalized solution to the Stokes problem with singularity in a two-dimensional non-convex polygonal domain with one reentrant corner on its boundary in special weight sets. We construct a new approximate solution of the problem produced by weighted finite element method. An iterative process for solving the resulting system of linear algebraic equations with a block preconditioning of its matrix is proposed on the basis of the incomplete Uzawa algorithm and the generalized minimal residual method. Results of numerical experiments have shown that the convergence rate of the approximate R_u-generalized solution to an exact one is independent of the size of the reentrant corner on the boundary of the domain and equals to the first degree of the grid size h in the norm of the weight space W^1_{2,u}(Omega) for the velocity field components in contrast to the approximate solution produced by classical finite element or finite difference schemes convergence to a generalized one no faster than at an O(h^alpha) rate in the norm of the space W^1_{2}(Omega) for the velocity field components, where alpha<1 and alpha depends on the size of the reentrant corner.
Full text
Keywords
сorner singularity; weighted finite element method; preconditioning.
References
1. Rukavishnikov V.A., Rukavishnikova H.I. The Finite Element Method for a Boundary Value Problem with Strong Singularity. Journal of Computational and Applied Mathematics, 2010, vol. 234, pp. 2870-2882. DOI: 10.1016/j.cam.2010.01.020.
2. Rukavishnikov V.A., Mosolapov A.O. New Numerical Method for Solving Time-Harmonic Maxwell Equations with Strong Singularity. Journal of Computational Physics, 2012, vol. 231, pp. 2438-2448. DOI: 10.1016/j.jcp.2011.11.031.
3. Moffatt H.K. Viscous and Resistive Eddies Near a Sharp Corner. Journal of Fluid Mechanics, 1964, vol. 18, pp. 1-18. DOI: 10.1017/S0022112064000015.
4. Dauge M. Stationary Stokes and Navier-Stokes System on Two- or Three-Dimensional Domains with Corners. I. Linearized Equations. SIAM Journal on Mathematical Analysis, 1989, vol. 20, pp. 74-97. DOI: 10.1137/0520006.
5. Schatz A.H., Wahlbin L.B. Maximum Norm Estimates in the Finite Element Method on Plane Polygonal Domains. Part 1. Mathematics of Computation, 1978, vol. 32, pp. 73-109. DOI: 10.2307/2006259.
6. Blum H. The Influence of Reentrant Corners in the Numerical Approximation of Viscous Flow Problems. Numerical Treatment of the Navier-Stokes Equations, 1989, vol. 30, no. 5, pp. 37-46. DOI: 110.1007/978-3-663-14004-7-4
7. Guo B., Schwab C. Analytic Regularity of Stokes Flow on Polygonal Domains in Countably Weighted Sobolev Spaces. Journal of Computational and Applied Mathematics, 2006, vol. 190, pp. 487-519. DOI: 10.1016/j.cam.2005.02.018.
8. Burda P., Novotn'y J, S'istek J. Precise FEM Solution of a Corner Singularity Using an Adjusted Mesh. International Journal for Numerical Methods in Fluids, 2005, vol. 47, pp. 1285-1292. DOI: 10.1002/fld.929.
9. Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. N.Y., Springer, 1991. DOI: 10.1007/978-1-4612-3172-1
10. Linke A. Collision in a Cross-shaped Domain - A Steady 2D Navier-Stokes Example Demonstrating the Importance of Mass Conservation in CFD. Computational Methods in Applied Mechanics and Engineering, 2009, vol. 198, pp. 3278-3268. DOI: 10.1016/j.cma.2009.06.016.
11. Scott L.R., Vogelius M. Norm Estimates for a Maximal Right Inverse of the Divergence Operator in Spaces of Piecewise Polynomials. Mathematical Modeling and Numerical Analysis, 1985, vol. 19, pp. 111-143. DOI: 10.1051/m2an/1985190101111
12. Rukavishnikov V.A., Rukavishnikova E.I. The Finite Element Method for the First Boundary Value Problem with Coordinated Degeneration of the Initial Data. Doklady Mathematics, 1995, vol. 50, pp. 335-339.
13. Rukavishnikov V.A., Kuznetsova E.V. A Scheme of a Finite Element Method for Boundary Value Problems with Non-Coordinated Degeneration of Input Data. Numerical Analysis and Applications, 2009, vol. 2, pp. 250-259. DOI: 10.1134/S1995423909030069
14. Rukavishnikov V.A., Rukavishnikova H.I. On the Error Estimation of the Finite Element Method for the Boundary Value Problems with Singularity in the Lebesgue Weighted Space. Numerical Functional Analysis and Optimization, 2013, vol. 34, pp. 1328-1347. DOI: 10.1080/01630563.2013.809582.
15. Rukavishnikov V.A., Mosolapov A.O. Weighted Edge Finite Element Method for Maxwell's Equations with Strong Singularity. Doklady Mathematics, 2013, vol. 87, pp. 156-159. DOI: 10.1134/S1064562413020105.
16. Rukavishnikov V.A. On the Differential Properties of R_{
u}-Generalized Solution of Dirichlet Problem. Doklady Akademii nauk SSSR, 1989, vol. 309, pp. 1318-1320.
17. Rukavishnikov V.A. On the Uniqueness of the R_{
u}-Generalized Solution of Boundary Value Problems with Non-Coordinated Degeneration of the Initial Data. Doklady Mathematics, 2001, vol. 63, pp. 68-70.
18. Rukavishnikov V.A. On the Existence and Uniqueness of an R_{
u}-Generalized Solution of a Boundary Value Problem with Uncoordinated Degeneration of the Input Data. Doklady Mathematics, 2014, vol. 90, pp. 562-564. DOI: 10.1134/S1064562414060155.
19. Rukavishnikov V.A., Rukavishnikova H.I. Dirichlet Problem with Degeneration of the Input Data on the Boundary of the Domain. Differential Equations, 2016, vol. 52, pp. 681-685. DOI: 10.1134/S0012266116050141
20. Ciarlet P. The! Finite! Element! Method! for! Elliptic! Problems.! Amsterdam,! North-Holland,! 1978.
21. Qin, J. On the Convergence of Some Low Order Mixed Finite Element for Incompressible Fluids. PhD thesis. Pennsylvania, Pennsylvania State University, 1994. DOI: 10.1017/CBO9780511616938
22. Bramble J.H., Pasciak J.E., Vassilev A.T. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems. SIAM Journal on Numerical Analysis, 1997, vol. 34, pp. 1072-1092. DOI: 10.1137/S0036142994273343
23. Saad Y. Iterative Methods for Sparse Linear Systems. Minneapolis, University of Minnesota, 2003. DOI: 10.1137/1.9780898718003
24. Olshanskii M.A., Reusken A. Analysis of a Stokes Interface Problem. Numerische Mathematik, 2006, vol. 103, pp. 129-149. DOI: 10.1007/S00211-005-0646-X.
25. Verfurth R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Chichester-Stuttgart, Wiley-Teubner, 1996.