Volume 11, no. 3Pages 29 - 43

Lord Kelvin and Andrey Andreyevich Markov in a Queue with Single Server

A. Bobrowski
We use Lord Kelvin's method of images to show that a certain infinite system of equations with interesting boundary conditions leads to a Markovian dynamics in an L^1-type space. This system originates from the queuing theory.
Full text
queue; method of images; generation theorem; boundary conditions; Markovian dynamics.
1. Engel K.-J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. N.Y., Springer, 2000.
2. B'atkai A., Piazzera S. Semigroups for Delay Equations. Wellesley, CRC Press, 2005.
3. Siegle P., Goychuk I., Talkner P., Hanggi P. Markovian Embedding of Non-Markovian Superdiffusion. Physical Review, 2010, vol. 81, Article ID 011136, 10 p.
4. Durbin R., Eddy S., Krogh A., Mitchison G. Biological Sequence Analysis. Probabilistic Models of Proteins and Nucleic Acids. Cambridge, Cambridge University Press, 1998.
5. Hoek J., Elliott R.J. Introduction to Hidden Semi-Markov Models. Cambridge, Cambridge University Press, 2018.
6. Goldstein S. On Diffusion by Discontinuous Movements, and on the Telegraph Equation. The Quarterly Journal of Mechanics and Applied Mathematics, 1986, vol. 4, no. 2, pp. 129-156.
7. Kac M. Some Stochastic Problems in Physics and Mechanics. N.Y., Literary Licensing, 1956.
8. Kisynski J. On M. Kac's Probabilistic Formula for the Solutions of the Telegraphist's Equation. Annales Polonici Mathematici, 1974, vol. 29, pp. 259-272.
9. Ethier S.N., Kurtz, T.G. Markov Processes. Characterization and Convergence. N.Y., Wiley, 1986.
10. Pinsky M.A. Lectures on Random Evolutions. Singapore, World Scientific, 1991.
11. Asmussen S. Applied Probability and Queues. N.Y., Springer, 2003.
12. Cox D.R. The Analysis of Non-Markovian Stochastic Processes by the Inclusion of Supplementary Variables. Mathematical Proceedings of the Cambridge Philosophical Society, 1955, vol. 51, no. 3, pp. 433-441.
13. Gwi.zd.z P. Application of Stochastic Semigroups to Queueing Models. tAnnales Mathematicae Silesianae, 2018 (to appear). DOI: 10.2478/amsil-2018-0007
14. Davis M.H.A. Lectures on Stochastic Control and Nonlinear Filtering. N.Y., Springer, 1984.
15. Davis M.H.A. Piece-Wise Deterministic Markov Processes. Journal of the Royal Statistical Society, 1984, vol. 46, no. 3, pp. 353-388.
16. Davis M.H.A. Markov Processes and Optimization. London, Chapman and Hall, 1993.
17. Rudnicki R., Tyran-Kaminska M. Piecewise Deterministic Processes in Biological Models. N.Y., Springer, 2017.
18. Greiner G. Perturbing the Boundary Conditions of a Generator. Houston Journal of Mathematics, 1987, vol. 13, no. 2, pp. 213-229.
19. Bobrowski A. Generation of Cosine Families via Lord Kelvin's Method of Images. Journal of Evolution Equations, 2010, vol. 10, no. 3, pp. 663-675.
20. Bobrowski A. Lord Kelvin's Method of Images in the Semigroup Theory. Semigroup Forum, 2010, vol. 81, no. 3, pp. 435-445.
21. Bobrowski A. Families of Operators Describing Diffusion Through Permeable Membranes. Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, 2015, vol. 250, pp. 87-105.
22. Bobrowski A., Gregosiewicz A. A General Theorem on Generation of Moments-Preserving Cosine Families by Laplace Operators in C[0,1]. Semigroup Forum, 2014, vol. 88, no. 3, pp. 689-701.
23. Bobrowski A., Gregosiewicz A., Murat M. Functionals-Preserving Cosine Families Generated by Laplace Operators in C[0,1]. Discrete and Continuous Dynamical System, 2015, vol. 20, no. 7, pp. 1877-1895.
24. Bobrowski A., Mugnolo D. On Moments-Preserving Cosine Families and Semigroups in C[0, 1]. Journal of Evolution Equations, 2013, vol. 13, no. 4, pp. 715-735.
25. Bobrowski A. From Diffusions on Graphs to Markov Chains via Asymptotic State Lumping. Annales Henri Poincare, 2012, vol. 13, no. 6, pp. 1501-1510.
26. Bobrowski A., Ka'zmierczak B., Kunze M. An Averaging Principle for Fast Diffusions in Domains Separated by Semi-Permeable Membranes. Mathematical Models and Methods in Applied Sciences, 2017, vol. 27, no. 4, pp. 663-706.