Volume 12, no. 1Pages 5 - 19

Comparison of Quasi-Stationary and Non-Stationary Solutions of Electrochemical Machining Problems Applying to Precision Cutting with Plate Electrode-Tool

V.P. Zhitnikov, N.M. Sherykhalina, S.S. Porechny
The quasi-stationary problem for modelling the process of electrochemical cutting with a plate electrode-tool is formulated. The formulation of the problem is based on the use of a stepwise function of current efficiency from the current density. Thus three areas with various conditions are formed on the machined surface. The usual stationarity condition is used in the area of high current densities. In the area of low current densities the dissolution is absent and the initial form of the boundaries remains. In the intermediate zone, the current density at each point is equal to the critical value. The presence of boundary conditions on each section of the machined surface allows to formulate a boundary problem for the analytical function of the complex variable and to find the shape of the boundary at any moment, regardless of the background. The solutions of quasi-stationary and non-stationary problems are compared, and the range of existence of quasi-stationary solutions is found.
Full text
electrochemical shaping; stepwise function; quasi-stationary model; error estimation.
1. Klokov V.V. Influence of Alternating Current Output on Stationary Anode Shaping. Workshop of the Seminar on Boundary Value Problems. Kazan, Kazan State University, 1979, vol. 16, pp. 94-102. (in Russian)
2. Gazizov E.R., Maklakov D.V. A Method for Calculating Anodic Shaping by a Dihedral Cathode for an Arbitrary Current-Output Dependence. Teorija i praktika elektrofizikokhimicheskikh metodov obrabotki detaley v aviastrojenii [Theory and Practice of Electrophysico-Chemical Methods of Processing Details in Aircraft Building], Kazan, Kazan Aviation Institute, 1994, pp. 32-35. (in Russian)
3. Datta M., Landolt D. Fundamental Aspects and Applications of Electrochemical Microfabrication. Electrochimica Acta, 2000, vol. 45, pp. 2535-2558. DOI: 10.1016/S0013-4686(00)00350-9
4. Forster R., Schoth A., Menz W. Micro-ECM for Production of Microsystems with a High Aspect Ratio. Microsystem Technologies, 2005, vol. 11, pp. 246-249. DOI: 10.1007/s00542-004-0374-7
5. Shin H.Sh., Kim B.H., Chu Ch.N. Analysis of the Side Gap Resulting from Micro Electrochemical Machining with a Tungsten Wire and Ultrashort Voltage Pulses. Journal of Micromechanics and Microengineering, 2008, vol. 18, pp. 1-6. DOI: 10.1088/0960-1317/18/7/075009
6. Wang S., Zhu D., Zeng Y., Liu Y. Micro Wire Electrode Electrochemical Cutting with Low Frequency and Small Amplitude Tool Vibration. International Journal of Advanced Manufacturing Technology, 2011, vol. 53, no. 5-8, pp. 535-544. DOI: 10.1007/s00170-010-2835-8
7. Wang F.Y., Xu J.W., Zhao J.S. Numerical Simulation of Electrochemical Machining Process and Machined Surface Prediction. Key Engineering Materials, 2011, vol. 45, no. 8, pp. 99-105. DOI: 10.4028/www.scientific.net/KEM.458.99
8. Qu N., Fang X., Li W., Zeng Y., Zhu D. Wire Electrochemical Machining with Axial Electrolyte Flushing for Titanium Alloy. Chinese Journal of Aeronautics, 2013, vol. 26, no. 1, pp. 224-229. DOI: 10.1016/j.cja.2012.12.026
9. Zhu D., Liu C., Xu Z., Liu J. Cathode Design Investigation Based on Iterative Correction of Predicted Profile Errors in Electrochemical Machining of Compressor Blades. Chinese Journal of Aeronautics, 2016, vol. 29, no. 4, pp. 1111-1118. DOI: 10.1016/j.cja.2016.01.003
10. Kotlyar L.M., Minazetdinov N.M. Modelling of Electrochemical Machining with the Use Of a Curvilinear Electrode and a Stepwise Dependence of the Current Efficiency on the Current Density. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, no. 1, pp. 127-135. DOI: 10.1134/S0021894416010144
11. Guo C., Qian J., Reynaers D. Electrochemical Machining with Scanning Micro Electrochemical Flow Cell. Journal of Materials Processing Technology, 2017, vol. 24, no. 7, pp. 171-183. DOI: 10.1016/j.jmatprotec.2017.04.017
12. Volgin V.M., Davydov A.D. Pseudotransient Method for Modelling of Electrochemical Machining. Russian Journal of Electrochemistry, 2017, vol. 53, no. 10, pp. 1109-1121. DOI: 10.1134/S1023193517100147
13. Guo C., Qian J., Reynaers D. A Three-Dimensional FEM Model of Channel Machining by Scanning Micro Electrochemical Flow Cell and Jet Electrochemical Machining. Precision Engineering, 2018, vol. 52, pp. 507-519. DOI: 10.1016/j.precisioneng.2018.02.002
14. Zhitnikov V.P., Sherykhalina N.M., Porechny S.S. Stationary Electrochemical Machining Simulation Applying to Precision Technologies. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 4, pp. 15-25. DOI: 10.14529/mmp170402
15. Christiansen S., Rasmussen H. Numerical Solutions for Two-Dimensional Annular Electrochemical Machining Problems. Journal of the Institute of Mathematics and Its Applications, 1976, no. 18, pp. 295-307. DOI: 10.1093/imamat/18.3.295
16. Kenney J.A., Hwang G.S. Electrochemical Machining with Ultrashort Voltage Pulses: Modelling of Charging Dynamics and Feature Profile Evolution. Nanotechnology, 2005, vol. 16, no. 7, pp. 309-313. DOI: 10.1088/0957-4484/16/7/001
17. Zhitnikov V.P., Fedorova G.I., Zinatullina O.V., Kamashev A.V. Simulation of Non-Stationary Processes of Electrochemical Machining. Journal of Materials Processing Technology, 2004, vol. 149, no. 1-3, pp. 398-403. DOI: 10.1016/j.jmatprotec.2004.02.014
18. Zhitnikov V.P., Fedorova G.I., Sherykhalina N.M., Urakov A.R. Numerical Investigation of Non-Stationary Electrochemical Shaping Based on an Analytical Solution of the Hele-Shaw Problem. Journal of Engineering Mathematics, 2006, vol. 55, no. 1-4, pp. 255-276. DOI: 10.1007/s10665-005-9018-x
19. Volgin V.M., Do V.D., Davydov A.D. Modelling of Wire Electrochemical Machining. Chemical Engineering Transactions, 2014, vol. 41, pp. 91-96. DOI: 10.3303/CET1441016
20. Volgin V.M., Lyubimov V.V., Gnidina I.V., Davydov A.D., Kabanova T.B. Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode. Procedia CIRP, 2016, vol. 55, pp. 65-70. DOI: 10.1016/j.procir.2016.08.031
21. Chen Y., Fang M., Jiang L. Multiphysics Simulation of the Material Removal Process in Pulse Electrochemical Machining (PECM). International Journal of Advanced Manufacturing Technology, 2017, vol. 91, no. 5-8, pp. 2455-2465. DOI: 10.1007/s00170-016-9899-z
22. Zhitnikov V.P., Oshmarina E.M., Fedorova G.I. The Use of Discontinuous Functions for Modelling the Dissolution Process of Steady-State Electrochemical Shaping. Russian Mathematics, 2010, vol. 54, no. 10, pp. 67-70. DOI: 10.3103/S1066369X10100099
23. Zhitnikov V.P., Oshmarina E.M., Fedorova G.I. Exact Solutions of Two Limiting Quasistationary Electrochemical Shaping Problems. Russian Mathematics, 2011, vol. 55, no. 12, pp. 16-22. DOI: 10.3103/S1066369X11120036
24. Lavrentjev M.A., Shabat B.V. Metody teorii funktsiy kompleksnogo peremennogo [Methods of the Theory of Functions of a Complex Variable]. Moscow, Nauka, 1987. (in Russian)
25. Henrici P. Applied and Computational Complex Analysis, N.Y., Wiley Classic Library, 1993.
26. Birkhoff G., Zarantonello E.H. Jets, Wakes and Cavities, N.Y., Academic Brennen, 1957.
27. Zhitnikov V.P., Sherykhalina N.M., Sokolova A.A. Problem of Reliability Justification of Computation Error Estimates. Mediterranean Journal of Social Sciences, 2015, vol. 6, no. 2, pp. 65-78. DOI: 10.5901/mjss.2015.v6n2s4p65
28. Aitken A.C. On Bernoulli's Numerical Solution of Algebraic Equations. Proceedings of the Royal Society of Edinburgh, 1926, vol. 46, pp. 289-305. DOI: 10.1017/S0370164600022070
29. Richargson L.F., Gaunt J.A. The Deferred Approach to the Limit. Philosophical Transactions of the Royal Society of London, 1927, vol. 226, pp. 299-361. DOI: 10.1098/rsta.1927.0008
30. Polubarinova-Kochina P.Ja. Theory of Groundwater Movement, Princeton, Princeton University Press, 1962.