Volume 12, no. 1Pages 20 - 31

Big-Data Approach in Abundance Estimation of Non-Identifiable Animals with Camera-Traps at the Spots of Attraction

E.E. Ivanko
Camera-traps is a relatively new but already popular instrument in the estimation of abundance of non-identifiable animals. Although camera-traps are convenient in application, there remain both theoretical complications (such as spatial autocorrelation or false negative problem) and practical difficulties, for example, laborious random sampling. In the article I propose an alternative way to bypass the mentioned problems. In the proposed approach, the raw video information collected from the camera-traps situated at the spots of natural attraction is turned into the frequency of visits, and the latter is transformed into the desired abundance estimate. The key for such a transformation is the application of the correction coefficients, computed for each particular observation environment using the Bayesian approach and the massive database (DB) of observations under various conditions. The proposed method is based on automated video-capturing at a moderate number of easy to reach spots, so in the long term many laborious census works may be conducted easier, cheaper and cause less disturbance for the wild life. Information post-processing is strictly formalized, which leaves little chance for subjective alterations. However, the method heavily relies on the volume and quality of the DB, which in its turn heavily relies on the efforts of the community. Although the construction of such DB could be rather difficult and controversial, it is much easier than the solution of the initial abundance estimation problem. Moreover, such a rich DB of visits might benefit not only censuses, but also many behavioral studies.
Full text
abundance estimation; camera-traps; big-data; Bayes naive classifier.
1. Borchers D.L., Buckland S.T., Zucchini W. Estimating Animal Abundance: Closed Populations. Statistics for Biology and Health. London, Springer, 2002. DOI: 10.1007/978-1-4471-3708-5
2. Seber G.A.F. The Estimation of Animal Abundance and Related Parameters. London, Macmillan Publishing Company, 1982.
3. Evans M.A., Bonett D.G., McDonald L. A General Theory for Analyzing Capture-Recapture Data in Closed Populations. Biometrics, 1994, no. 50, pp. 396-405. DOI: 10.2307/2533383
4. Arnason A.N., Schwarz C.J., Gerrard J.M. Estimating Closed Population Size and Number of Marked Animals from Sighting Data. Journal of Wildlife Management, 1991, no. 55, pp. 718-730. DOI: 10.2307/3809524
5. Karanth K. Estimating Tiger (Panthera Tigris) Populations from Cameratrap Data Using Capture-Recapture Models. Biological Conservation, 1995, no. 71, pp. 333-338. DOI: 10.1016/0006-3207(94)00057-W
6. Carbone C., Christie S., Conforti K., Coulson T., et al. The Use of Photographic Rates to Estimate Densities of Tigers and Other Cryptic Mammals. Animal Conservation, 2001, no. 4, pp. 75-79. DOI: 10.1017/S1367943001001081
7. Cuellar E., Maffei L., Arispe R., Noss A. Geoffroy's Cats at the Northern Limit of Their Range: Activity Patterns and Density Estimates from Camera Trapping in Bolivian Dry Forests. Studies on Neotropical Fauna and Environment, 2006, no. 41, pp. 169-177. DOI: 10.1080/01650520600840001
8. Scott C.S., Linde E.T.O., Laura K.M., et al. The Use of Camera Traps for Estimating Jaguar Panthera Onca Abundance and Density Using Capture/Recapture Analysis. Oryx, 2004, vol. 38, no. 2, pp. 148-154.
9. Heilbrun R.D., Silvy L.J., Peterson M.J., Tewes M.E. Estimating Bobcat Abundance Using Automatically Triggered Cameras. Wildlife Society Bulletin, 2006, no. 34, pp. 69-73. DOI: 10.2193/0091-7648(2006)34[69:EBAUAT]2.0.CO;2
10. Maffei L., Noss A.J. How Small is Too Small? Camera Trap Survey Areas and Density Estimates for Ocelots in the Bolivian Chaco. Biotropica, 2008, no. 40, pp. 71-75.
11. Oliveira-Santos L.G.R., Zucco C.A., Antunes P.C., Crawshaw J.P.G. Is it Possible to Individually Identify Mammals with no Natural Markings Using Camera-Traps. Mammalian Biology, 2010, no. 75, pp. 375-378. DOI: 10.1016/j.mambio.2009.08.005
12. O'Connell A.F., Nichols J.D., Karanth K.U. Camera Traps in Animal Ecology: Methods and Analyses. N.Y., Springer, 2011. DOI: 10.1007/978-4-431-99495-4
13. Borchers D., Distiller G., Foster R., Harmsen B., Milazzo L. Continuous Time Spatially Explicit Capture Recapture Models, with an Application to a Jaguar Camera Trap Survey. Methods in Ecology and Evolution, 2014, no. 5, pp. 656-665. DOI: 10.1111/2041-210X.12196
14. Kohn M.H., York E.C., Kamradt D.A., Haught G., Sauvajot R.M., Wayne R.K. Estimating Population Size by Genotyping Faeces. Proceedings of the Royal Society of London B: Biological Sciences, 1999, no. 266, pp. 657-663. DOI: 10.1098/rspb.1999.0686
15. Lukacs P.M., Burnham K.P. Estimating Population Size from Dna-Based Closed Capture-Recapture Data Incorporating Genotyping Error. Journal of Wildlife Management, 2005, no. 69, pp. 396-403. DOI: 10.2193/0022-541X(2005)069<0396:EPSFDC>2.0.CO;2
16. Caniglia R., Fabbri E., Cubaynes S., Gimenez O., Lebreton J.D., Randi E. An Improved Procedure to Estimate Wolf Abundance Using Non-Invasive Genetic Sampling and Capture-Recapture Mixture Models. Conservation Genetics, 2012, no. 13, pp. 53-64. DOI: 10.1007/s10592-011-0266-1
17. Brinkman T.J., Person D.K., Smith W., Chapin F.S., et al. Using DNA to Test the Utility of Pellet-Group Counts as an Index of Deer Counts. Wildlife Society Bulletin, 2013, no. 37, pp. 444-450. DOI: 10.1002/wsb.270
18. Rodgers T.W., Janecka J.E. Applications and Techniques for Non-Invasive Faecal Genetics Research in Felid Conservation. European Journal of Wildlife Research, 2013, no. 59, pp. 1-16. DOI: 10.1007/s10344-012-0675-6
19. Schnell I.B., Sollmann R., Calvignac-Spencer S., Siddall M.E., Yu D.W., Wilting A., et al. iDNA from Terrestrial Haematophagous Leeches as a Wildlife Surveying and Monitoring Tool: Prospects, Pitfalls and Avenues to be Developed. Frontiers in Zoology, 2015, no. 12, pp. 1-14. DOI: 10.1186/s12983-015-0115-z
20. Fewster R.M. Some Applications of Genetics in Statistical Ecology. AStA Advances in Statistical Analysis, 2017, vol. 101, no. 4, pp. 349-379. DOI: 10.1007/s10182-016-0273-0
21. Kery M. Estimating Abundance From Bird Counts: Binomial Mixture Models Uncover Complex Covariate Relationships. The Auk, 2008, vol. 125, no. 2, pp. 336-345. DOI: 10.1525/auk.2008.06185
22. Dail D., Madsen L. Models for Estimating Abundance from Repeated Counts of an Open Metapopulation. Biometrics, 2011, vol. 67, no. 2, pp. 577-587. DOI: 10.1111/j.1541-0420.2010.01465.x
23. Royle J.A., Chandler R.B., Sollmann R., Gardner B. Spatial Capture-Recapture. Amsterdam, Academic Press, 2014.
24. Ramsey D.S.L., Caley P.A., Robley A. Estimating Population Density from Presence-Absence Data Using a Spatially Explicit Model. The Journal of Wildlife Management, 2015, vol. 79, no. 3, pp. 491-499. DOI: 10.1002/jwmg.851
25. Buckland S.T., Thomas L. Advanced Distance Sampling. Oxford, Oxford University Press, 2007.
26. Buckland S.T., Anderson D.R., Burnham KP, Laake J.L. Distance Sampling: Estimating Abundance of Biological Populations. Springer Netherlands, 2012.
27. Buckland S.T., Rexstad E.A., Marques T.A., Oedekoven C.S. Distance Sampling: Methods and Applications. N.Y., Springer, 2015. DOI: 10.1007/978-3-319-19219-2
28. Royle J.A., Nichols J.D. Estimating Abundance from Repeated Presence Absence Data or Point Counts. Ecology, 2003, no. 84, pp. 777-790. DOI: 10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
29. Hutchinson J.M.C., Waser P.M. Use, Misuse and Extensions of 'Ideal Gas' Models of Animal Encounter. Biological Reviews of the Cambridge Philosophical Society, 2007, no. 82, pp. 335-359. DOI: 10.1111/j.1469-185X.2007.00014.x
30. Rowcliffe J.M., Field J., Turvey S.T., Carbone C. Estimating Animal Density Using Camera Traps Without the Need for Individual Recognition. Journal of Applied Ecology, 2008, no. 45, pp. 1228-1236. DOI: 10.1111/j.1365-2664.2008.01473.x
31. Foster R.J., Harmsen B.J. A Critique of Density Estimation from Cameratrap Data. The Journal of Wildlife Management, 2012, no. 76, pp. 224-236. DOI: 10.1002/jwmg.275
32. Lucas T.C.D., Moorcroft E.A., Freeman R., Rowcliffe J.M., Jones K.E. A Generalised Random Encounter Model for Estimating Animal Density with Remote Sensor Data. Methods in Ecology and Evolution, 2015, no. 6, pp. 500-509. DOI: 10.1111/2041-210X.12346
33. Ferguson P.F.B., Conroy M.J., Hepinstall-Cymerman J. Occupancy Models for Data with False Positive and False Negative Errors and Heterogeneity Across Sites and Surveys. Methods in Ecology and Evolution, 1994, no. 6, pp. 1395-1406.
34. McCarthy M.A., Moore J.L., Morris W.K., Parris K.M., Garrard G.E., Vesk P.A., et al. The Influence of Abundance on Detectability. Oikos, 2013, no. 122, pp. 717-726. DOI: 10.1111/j.1600-0706.2012.20781.x
35. Voronoi G. Nouvelles applications des parametres continus a la theorie des formes quadratiques. Journal fur die Reine und Angewandte Mathematik, 1908, no. 133, pp. 97-178. (in Italian)
36. Aurenhammer F., Klein R., Lee D.T. Voronoi Diagrams and Delaunay Triangulations. Singapore, World Scientific Publishing Company, 2013. DOI: 10.1142/8685
37. Delaunay B.N. Neue Darstellung der geometrischen Kristallographie. Zeitschrift fur Kristallographie, 1932, no. 84, pp. 109-149. (in German)
38. Hand D.J., Yu K. Idiot's Bayes - not so Stupid after All? International Statistical Review, 2001, no. 69, pp. 385-398.
39. Hulbert I.A.R., French J. The Accuracy of GPS for Wildlife Telemetry and Habitat Mapping. Journal of Applied Ecology, 2001, no. 28, pp. 869-878. DOI: 10.1046/j.1365-2664.2001.00624.x
40. Braun C. Techniques for Wildlife Investigation and Management. Wildlife Society, 2005.
41. Clark J.S. Models for Ecological Data: An Introduction. Princeton, Princeton University Press, 2007.
42. Watt T.A., McCleery R.H., Hart T. Introduction to Statistics for Biology. London, Chapman and Hall/CRC, 2007.
43. Wackerly D., Mendenhall W., Scheaffer R. Mathematical Statistics with Applications. Thomson Brooks/Cole, 2008.