Volume 12, no. 2Pages 158 - 165 Modelling of Rhombohedral Magnetostriction in Fe-Ga Alloys
M.V. Matyunina, M.A. Zagrebin, V.V. Sokolovskiy, V.D. BuchelnikovThe paper presents the results of modelling of rhombohedral magnetostriction for Fe-Ga alloys in the cubic crystal structures. The results are obtained with the help of the theory of density functional. We show that the energy of magnetic crystalline anisotropy is a decreasing function of the small deformation in the concentration range from 3,125 to 25 at.%. Magnetic crystalline anisotropy changes the sign, if the deformation is more than 1% for alloys with Ga 15,625, 21,875 and 25 at.%. Rhombohedral magnetostriction constant agrees well with the experiment results for alloys with Ga concentration at 12,5 - 18,75 at.%.
Full text- Keywords
- magnetocrystalline anisotropy energy; ab intio calculations; rhobohedral magnetostriction.
- References
- 1. Clark A.E., Hathaway K.B., Wun-Fogle M. Extraordinary Magnetoelasticity and Lattice Softening in Bcc Fe-Ga Alloys. Journal of Applied Physics, 2003, vol. 93, pp. 8621-8623. DOI: 10.1063/1.1540130
2. Restorff J.B., Wun-Fogle M., Hathaway K.B. et al. Tetragonal Magnetostriction and Magnetoelastic Coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge Alloys. Journal of Applied Physics, 2012, vol. 111, p. 023905. DOI: 10.1063/1.3674318
3. Qingsong Xing, Yingzhou Du, McQueeney R.J., Lograsso T.A. Structural Investigations of Fe-Ga Alloys: Phase Relations and Magnetostrictive Behavior. Acta Materialia, 2008, vol. 56, pp. 4536-4546. DOI: 10.1016/j.actamat.2008.05.011
4. Yanning Zhang, Hui Wang, Ruqian Wu. First Principles Determination of the Rhombohedral Magnetostriction of Fe{100-x}Al{x} and Fe{100-x}Ga{x} Alloys. Physical Review B, 2012, vol. 86, p. 224410. DOI: 10.1103/PhysRevB.86.224410
5. Chikazumi S. tPhysics of Ferromagnetism. New York, Oxford University Press, 1997.
6. Kresse G., Furthm"uller J. Efficient Iterative Schemes for Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review, 1996, vol. 54, pp. 11169-11186. DOI: 10.1103/PhysRevB.54.11169
7. Kresse G., Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review, 1999, vol. 59, pp. 1758-1775. DOI: 10.1103/PhysRevB.59.1758
8. Perdew J.P., Burke K., Enzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996, vol. 77, pp. 3865-3868. DOI: 10.1103/PhysRevLett.77.3865
9. Monkhorst H.J., Pack J.D. Special Points for Brillouin-Zone Integrations. Physical Review, 1976, vol. 13, pp. 5188-5192. DOI: 10.1103/PhysRevB.13.5188
10. Matyunina M.V., Zagrebin M.A., Sokolovskiy V.V., Pavlukhina O.O., Buchelnikov V.D., Balagurov A.M., Golovin I.S. Phase Diagram of Magnetostrictive Fe-Ga Alloys: Insights from Theory and Experiment. Phase Transitions, 2019, vol. 92, pp. 101-116. DOI: 10.1080/01411594.2018.1556268