Volume 12, no. 2Pages 172 - 174 Jacek Banasiak (on 60th birthday)
Full text- References
- 1. Banasiak J., Mika J.R. Diffusion Limit for the Linear Boltzmann Equation of the Neutron Transport Theory. Mathematical Methods in the Applied Sciences, 1994, vol. 17, no. 13, pp. 1071-1087. DOI: 10.1002/mma.1670171306
2. Banasiak J., Frosali G., Spiga G. Asymptotic Analysis for a Particle Transport Equation with Inelastic Scattering in Extended Kinetic Theory. Mathematical Models and Methods in Applied Sciences, 1998, vol. 8, no. 5, pp. 851-874. DOI: 10.1142/S021820259800038X
3. Banasiak J. Mathematical Properties of Inelastic Scattering Models in Linear Kinetic Theory. Mathematical Models and Methods in Applied Sciences, 2000, vol. 10, no. 2, pp. 163-186. DOI: 10.1142/S0218202500000112
4. Banasiak J. On a Diffusion-Kinetic Equation Arising in Extended Kinetic Theory. Mathematical Methods in the Applied Sciences, 2000, vol. 23, no. 14, pp. 1237-1256. DOI: 10.1002/1099-1476(20000925)23:14<1237::AID-MMA163>3.0.CO;2-I
5. Banasiak J., Lachowicz M. Chaos for a Class of Linear Kinetic Models. Comptes Rendus de lAcademie de Sciences - Serie IIb: Mecanique, 2001, vol. 329, no. 6, pp. 439-444. DOI: 10.1016/S1620-7742(01)01353-8 (in French)
6. Banasiak J., Lamb W. On the Application of Substochastic Semigroup Theory to Fragmentation Models with Mass Loss. Journal of Mathematical Analysis and Applications, 2003, vol. 284, no. 1, pp. 9-30. DOI: 10.1016/S0022-247X(03)00154-9
7. Arlotti L., Banasiak J. Strictly Substochastic Semigroups with Application to Conservative and Shattering Solutions to Fragmentation Equations with Mass Loss. Journal of Mathematical Analysis and Applications, 2004, vol. 293, no. 2, pp. 693-720. DOI: 10.1016/j.jmaa.2004.01.028
8. Banasiak J., Lachowicz M., Moszynski M. Semigroups for Generalized Birth-and-Death Equations in l_p Spaces. Semigroup Forum, 2006, vol. 73, no. 2, pp. 175-193. DOI: 10.1007/s00233-006-0621-x
9. Banasiak J., Lachowicz M., Moszynski M. Chaotic Behavior of Semigroups Related to the Process of Gene Amplification-Deamplification with Cell Proliferation. Mathematical Biosciences, 2007, vol. 206, no. 2, pp. 200-205. DOI: 10.1016/j.mbs.2005.08.004
10. Banasiak J., Moszynski M. Dynamics of Birth-and-Death Processes with Proliferation - Stability and Chaos. Discrete and Continuous Dynamical Systems, 2011, vol. 29, no. 1, pp. 67-79. DOI: 10.3934/dcds.2011.29.67
11. Banasiak J., Lamb W. Analytic Fragmentation Semigroups and Continuous Coagulation-Fragmentation Equations with Unbounded Rates. Journal of Mathematical Analysis and Applications, 2012, vol. 391, no. 1, pp. 312-322. DOI: 10.1016/j.jmaa.2012.02.002
12. Banasiak J. Global Classical Solutions of Coagulation Fragmentation Equations with Unbounded Coagulation Rates. Nonlinear Analysis: Real World Applications, 2012, vol. 13, no. 1, pp. 91-105. DOI: 10.1016/j.nonrwa.2011.07.016
13. Banasiak J. Transport Processes with Coagulation and Strong Fragmentation. Discrete and Continuous Dynamical Systems - Series B, 2012, vol. 17, no. 2, pp. 445-472. DOI: 10.3934/dcdsb.2012.17.445
14. Banasiak J., Lachowicz M. On a Macroscopic Limit of a Kinetic Model of Alignment. Mathematical Models and Methods in Applied Sciences, 2013, vol. 23, no. 14, pp. 2647-2670. DOI: 10.1142/S0218202513500425
15. Banasiak J., Falkiewicz A., Namayanja P. Asymptotic State Lumping in Transport and Diffusion Problems on Networks with Applications to Population Problems. Mathematical Models and Methods in Applied Sciences, 2016, vol. 26, no. 2, pp. 215-247. DOI: 10.1142/S0218202516400017
16. Banasiak J., Puchalska A. Generalized Network Transport and Euler-Hille Formula. Discrete and Continuous Dynamical Systems - B, 2018, vol. 23, no. 5, pp. 1873-1893. DOI: 10.3934/dcdsb.2018185
17. Banasiak J. Analytic Fragmentation Semigroups and Classical Solutions to Coagulation-Fragmentation Equations - a Survey. Acta Mathematica Sinica, English Series, 2019, vol. 35, no. 1, pp. 83-104. DOI: 10.1007/s10114-018-7435-9