Volume 12, no. 3Pages 102 - 114

Mathematical Modelling of Reconstruction of Volumetric Images in X-Ray Computed Tomography Using Holographic Methods

E.N. Simonov, A.V. Prokhorov, A.V. Akintseva
We consider a computational algorithm for solving the inverse problem of x-ray tomography to reconstruct the internal structure of micro objects in the near Fresnel zone using holographic methods of visualization of three-dimensional images. Holographic methods do not give a direct solution to the problem on reconstruction of the internal structure of the object. These methods can only solve the problem on volumetric mapping of some object surface. However, using the data on the absorption of both x-ray radiation of the object and phase contrast holographic signals in the near Fresnel zone, we show the possibility to obtain a volumetric holographic image of the inner layers of the object. In order to solve this complex problem, it is necessary to use a three-dimensional (3D) radon transformation of the internal function of the object and a two-dimensional (2D) radon transformation of the phase contrast holographic projection. We obtain an algorithm to reconstruct phase-contrast tomographic images of the internal structure of an object. Based on the algorithm, we construct a computational algorithm for the practical reconstruction of volumetric tomographic images of the internal structure of microobjects. The results of the research were confirmed by the mathematical modelling of the algorithm to reconstruct three-dimensional images. To this end, we develop a mathematical model of the test phantom, and simulate the phase contrast projections for the test phantom. Then, we develop a software in order to reconstruct the phase contrast tomographic images by tomographic methods on the basis of the obtained phase contrast projections.
Full text
Keywords
x-ray computed tomography; holography; two-dimensional and three-dimensional radon transformation.
References
1. Anastasio M.A., Shi D., De Carlo F., Pan X. Analytic Image Reconstruction in Local Phase-Contrast Tomography. Physics in Medicine and Biology, 2004, vol. 49, no. 1, pp. 121-144. DOI: 10.1088/0031-9155/49/1/009
2. Cloetens P., Ludwig W., Baruchel J., Van Dyke D., Van Landuyt J., Guigay J.P., Schlenker M. Holotomography: Quantitative Phase Tomography with Micrometer Resolution Using Hard Synchrotron Radiation X-Rays. Applied Physics Letters, 1999, vol. 75, no. 19, pp. 2912-2914. DOI: 10.1063/1.125225
3. Davis T., Gao D., Gureyev T., Stevenson A., Wilkins S. Phase-Contrast Imaging of Weakly Absorbing Materials Using Hard X-Rays. Nature, 1995, vol. 373, no. 6515, pp. 595-598. DOI: 10.1038/373595a0
4. Groso A., Abela R., Stampanoni M. Implementation of a Fast Method for High Resolution Phase Contrast Tomography. Optics Express, 2006, vol. 14, no. 18, pp. 8103-8110. DOI: 10.1364/OE.14.008103
5. Groso A., Stampanoni M., Abela R., Schneider P., Linga S., Muller R. Phase Contrast Tomography: an Alternative Approach. Applied Physics Letters, 2006, vol. 88, no. 21, p. 214104. DOI: 10.1063/1.2207221
6. Gureyev T.E., Paganin D.M, Myers G.R., Nesterets Ya.I., Wilkins S. Phase-and-Amplitude Computer Tomography. Applied Physics Letters, 2006, vol. 89, no. 3, p. 034102. DOI: 10.1063/1.2226794
7. Snigirev A., Snigireva I., Kohn V., Kuznetsov S., Schelokov I. On the Possibilities of X-Ray Phase Contrast Microimaging by Coherent High-Energy Synchrotron Radiation. Review of Scientific Instruments, 1995, vol. 66, no. 12, pp. 5486-5492. DOI: 10.1063/1.1146073
8. Wilkins S.W., Gureyev T.E., Gao D., Pogany A., Stevenson A.W. Phase-Contrast Imaging Using Polychromatic Hard X-Rays. Nature, 1996, vol. 384, no. 6607, pp. 335-338. DOI: 10.1038/384335a0
9. Bronnikov A.V. Reconstruction Formulas in Phase-Contrast Tomography. Optics Communications, 1999, vol. 171, no. 4-6, pp. 239-244.DOI: 10.1016/S0030-4018(99)00575-1
10. Bronnikov A.V. Theory of Quantitative Phase-Contrast Computed Tomography. Journal of the Optical Society of America A, 2002, vol. 19, no. 3, pp. 472-480. DOI: 10.1364/JOSAA.19.000472
11. Yaroslavsky L.P., Merzlyakov N.S. Cifrovaya golografiya [Digital Holography]. Moscow, Nauka, 1982. (in Russian)
12. Gabor D. A New Microscopic Principle. Nature, 1948, vol. 161, no. 4098, pp. 777-778. DOI: 10.1038/161777a0
13. Simonov E.N. Rentgenovskaya komp'yuternaya tomografiya [X-Ray Computed Tomography]. Snezhinsk: Publishing House of the Russian Federal Nuclear Center-VNIITF, 2002. (in Russian)
14. Simonov E.N. Fizika vizualizacii izobrazheniy v rentgenovskoy komp'yuternoy tomografii [Physics of Image Visualization in X-Ray Computed Tomography]. Chelyabinsk: Publishing Centre SUSU, 2014. (in Russian)