Volume 13, no. 2Pages 144 - 150

Convergence Analysis of the Guaranteed Parameter Estimation Algorithm for Models of One-Dimensional Chaotic Systems

A.S. Sheludko
This paper considers the parameter estimation problem for models of one-dimensional chaotic systems. The guaranteed algorithm is proposed in the context of set-membership approach, which assumes that only intervals of possible values are known for the uncertain variables in the model (initial condition, parameter and measurement errors). The algorithm recursively computes the interval estimates of the parameter at every time step. If the prior information is correct, found interval estimates always contain the true value of the parameter. For certain models of measurement errors the result of the algorithm is the exact value of the parameter (the final interval estimate contains a single point). The goal of this study is to derive conditions under which the guaranteed algorithm improves the interval estimate of the parameter.
Full text
chaotic system; nonlinear model; parameter estimation; interval estimate.
1. Feng J.C., Tse C.K. Reconstruction of Chaotic Signals with Applications to Chaos-Based Communications. Singapore, World Scientific, 2008. DOI: 10.1142/6585
2. Bezruchko B.P., Smirnov D.A. Extracting Knowledge from Time Series. An Introduction to Nonlinear Empirical Modeling. Springer, 2010. DOI: 10.1007/978-3-642-12601-7
3. Kolesov A.Yu., Rozov N.Kh. On the Definition of Chaos. Russian Mathematical Surveys, 2009, vol. 64, no. 4, pp. 701-744.
4. Voss H.U., Timmer J., Kurths J. Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements. International Journal of Bifurcation and Chaos, 2004, vol. 14, no. 6, pp. 1905-1933. DOI: 10.1142/S0218127404010345
5. Sheludko A.S., Shiryaev V.I. [The Algorithm of Guaranteed Parameter Estimation for One-Dimensional Chaotic Map]. Information Technologies, 2015, vol. 21, no. 1, pp. 30-34. (in Russian)
6. Sheludko A.S. [Guaranteed Parameter Estimation for Discrete-Time Chaotic Systems]. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering, 2018, vol. 7, no. 1. pp. 25-39. (in Russian) DOI: 10.14529/cmse180103
7. Kurzhanskii A.B., Furasov V.D. Identification of Nonlinear Processes: Guaranteed Estimates. Automation and Remote Control, 1999, vol. 60, no. 6, pp. 814-828.
8. Raissi T., Ramdani N., Candau Y. Set Membership State and Parameter Estimation for Systems Described by Nonlinear Differential Equations. Automatica, 2004, vol. 40, no. 10, pp. 1771-1777. DOI: 10.1016/j.automatica.2004.05.006
9. Abdallah F., Gning A., Bonnifait P. Box Particle Filtering for Nonlinear State Estimation Using Interval Analysis. Automatica, 2008, vol. 44, no. 3, pp. 807-815. DOI: 10.1016/j.automatica.2007.07.024
10. Jaulin L., Kieffer M., Didrit O., Walter E. Applied Interval Analysis. Springer, 2001. DOI: 10.1007/978-1-4471-0249-6
11. Shary S.P. A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity. Reliable Computing, 2002, vol. 8, no. 5, pp. 321-418. DOI: 10.1023/A:1020505620702
12. Sheludko A.S. Approximation of the Solution Set for a System of Nonlinear Inequalities for Modelling a One-Dimensional Chaotic Process. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, no. 1, pp. 152-157. DOI: 10.14529/mmp180114
13. Ananyev B.I., Shiryaev V.I. Determining the Worst Signals in Guaranteed Estimation Problems. Automation and Remote Control, 1987, no. 3, pp. 49-58.
14. Shiryaev V.I., Podivilova E.O. Set-Valued Estimation of Linear Dynamical System State When Disturbance is Decomposed as a System of Functions. Procedia Engineering, 2015, vol. 129, pp. 252-258. DOI: 10.1016/j.proeng.2015.12.045