Volume 13, no. 4Pages 5 - 18

Numerical Study of the Susuplume Air Pollution Model

S.M. Elsakov, D.A. Drozin, A.V. Herreinstein, T.G. Krupnova, S.G. Nitskaya, T.Yu. Olenchikova, A.A. Zamyshlyaeva
In this paper, we propose a SUSUPLUME air pollution as a modern application of the classical Gaussian plume model. The presented model takes into account meteorological conditions and parameters of the pollution sources. The classical model is supplemented by the equations of motion of the center of mass of a single emission. A numerical study has shown that in stationary weather conditions the presented model qualitatively coincides with other known models. The results of calculating the concentrations of pollutants do not contradict the obtained values based on the official methodology for calculating the maximum concentrations of pollutants approved for use in the territory of the Russian Federation. The SUSUPLUME model contains a number of identifiable parameters and it can be adapted to real conditions. The computational model consists of two blocks: a block for recording measurement information and a block for calculating the concentrations of pollutants. The measurement information registration unit has a low labor intensity (over a million registrations per second). The pollutant concentrations calculation block is laborious (400 points of calculations per second). Concentrations are calculated independently, it allows to use parallelization of the computational process in the future.
Full text
air pollution model; Gaussian plume model; Romberg's method.
1. Krupnova T.G., Rakova O.V., Plaksina A.L., Gavrilkina S.V., Baranov E.O., Abramyan A.D. Short Communication: Effect of Urban Greening and Land Use on Air Pollution in Chelyabinsk, Russia. tBiodiversitas, 2020, vol. 21, no. 6, pp. 2716-2720. DOI: 10.13057/Biodiv/D210646
2. Ob utverzhdenii metodov raschetov rasseivaniya vybrosov vrednykh (zagryaznyayushchikh) veshchestv v atmosfernom vozdukhe [On the Approval of Methods for Calculating the Dispersion of Emissions of Harmful (Polluting) Substances in the Air]. Moscow, Rostekhnadzor, 2017. (in Russian)
3. Tao Z., Santanello J.A., Chin M., Zhou S., Tan Q., Kemp E.M., Peters-Lidard C.D. Effect of Land Cover on Atmospheric Processes and Air Quality Over the Continental United States - A NASA Unified WRF (NU-WRF) Model Study. Atmospheric Chemistry and Physics, 2013, vol. 13, pp. 6207-6226. DOI: 10.5194/acpd-13-5429-2013
4. Kai Wang, Yang Zhang, Khairunnisa Yahya, Shiang-Yuh Wu, Grell G. Implementation and Initial Application of a New Chemistry-Aerosol Option in WRF/Chem for Simulation of Secondary Organic Aerosols and Aerosol Indirect Effects. Atmospheric Environment, 2015, vol. 115, pp. 716-732. DOI: 10.1016/j.atmosenv.2014.12.007
5. Khairunnisa Yahya, Glotfelty T., Kai Wang, Yang Zhang, Nenes A. Modeling Regional Air Quality and Climate: Improving Organic Aerosol and Aerosol Activation Processes in WRF/Chem Version 3.7.1. Geoscientific Model Development, 2017, vol. 10, pp. 2333-2363. DOI: 10.5194/gmd-10-2333-2017
6. Jian He, Ruoying He, Yang Zhang. Impacts of Air-Sea Interactions on Regional Air Quality Predictions Using a Coupled Atmosphere-Ocean Model in Southeastern U.S. tAerosol and Air Quality Research, 2018, vol. 18, pp. 1044-1067. DOI: 10.4209/aaqr.2016.12.0570
7. Solazzo E., Vardoulakis S., Cai X. A Novel Methodology for Interpreting Air Quality Measurements from Urban Streets Using CFD Modelling. Atmospheric Environment, 2011, vol. 45, pp. 5230-5239. DOI: 10.1016/j.atmosenv.2011.05.022
8. Gmez-Losada A., Santos F.M., Gibert K., Pires J.C.M. A Data Science Approach for Spatiotemporal Modelling of Low and Resident Air Pollution in Madrid (Spain): Implications for Epidemiological Studies. Computers, Environment and Urban Systems, 2019, vol. 75, pp. 1-11. DOI: 10.1016/J.Compenvurbsys.2018.12.005
9. Sanchez B., Santiago J.L., Martilli A., Martin F., Borge R., Quaassdorff C., De La Paz D. Modelling NOX Concentrations Through CFD-RANS in an Urban Hotspot Using High Resolution Traffic Emissionsa and Meteorology from a Mesoscale Model. Atmospheric Environment, 2017, vol. 163, pp. 155-165. DOI: 10.1016/j.atmosenv.2017.05.022
10. Kamenetsky E.S., Radionoff A.A. Aerodynamics of Mountain Valleys with Varying Cross Sections. Boundary-Layer Meteorology, 1999, vol. 91, no. 2, pp. 191-197.
11. Metodika rascheta kontsentratsiy v atmosfernom vozdukhe vrednykh veshchestv, soderzhashchikhsya v vybrosakh predpriyatiy (OND-86) [Methodology for Calculating the Concentration of Harmful Substances in the Atmospheric Air Contained in the Emissions of Enterprises (OND-86)]. Leningrad, Gidrometeoizdat, 1987. (in Russian)
12. Genikhovich E.L. Osnovnye napravleniya dorabotki normativnogo dokumenta OND-86 po raschetu rasseivaniya v atmosfere vybrosov zagryaznyayushchikh veshchestv [The Main Directions of the Revision of the Normative Document OND-86 on the Calculation of Dispersion of Pollutant Emissions in the Atmosphere]. Saint-Petersburg, NPK ''Atmosphere'', 2002. (in Russian)
13. Hurley P.J., Physick W.L., Luhar A.K. TAPM: A Practical Approach to Prognostic Meteorological and Air Pollution Modelling. Environmental Modelling and Software, 2005, vol. 20, no. 6, pp. 737-752.
14. Hurley P. TAPM V4. User Manual. CSIRO Marine and Atmospheric Research Internal Report, 2008, no. 5, 35 p.
15. Gifford F.A. Turbulent Diffusion Typing Schemes: a Review. Nuclear Safety, 1976, vol. 17, no. 1, pp. 68-86.
16. Atmospheric Dispersion Models for Application in Relation to Radionuclide Release. International Atomic Energy Agency, Technical Publications, vol. 379, 1986, 138 p.
17. Bespalov M.S. [Modelling the Spread of Contaminants in the Atmosphere as a Tool for Air Protection Activities]. Problems of Ecological Monitoring And Modeling of Ecosystems, 2016, vol. 27, no. 1, pp. 74-85. (in Russian)
18. Byzova N.L., Garger E.K., Ivanov V.N. Eksperimental'nye issledovaniya atmosfernoy diffuzii i raschety rasseyaniya primesi [Experimental Studies of Atmospheric Diffusion and Calculations of Impurity Scattering]. Leningrad, Gidrometeoizdat, 1991. (in Russian)
19. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery [Turbulence in the Atmospheric Boundary Layer]. Leningrad, Goskomgidromet, 1989. (in Russian)
20. The AMS/EPA Regulatory Model - AERMOD. U.S. Environmental Protection Agency, EPA-454/B-03-001, 2004.
21. Scire J.S., Strimaitis D.G., Yamartino R.J. Model Formulation and User’s Guide for the CALPUFF Dispersion Model. California Air Resources Board, 1990.
22. Brykin S.N., Markovsky V.V., Serebryakov I.S. Metodika razrabotki normativov predel'no-dopustimykh vybrosov radioaktivnykh veshchestv v atmosfernyy vozdukh [Methodology for the Development of Standards for Maximum Permissible Emissions of Radioactive Substances into the Atmospheric Air], 2010. (in Russian)
23. Berlyand M.E. Prognoz i regulirovanie zagryazneniy atmosfery [Forecast and Regulation of Atmospheric Pollution]. Leningrad, Gidrometeoizdat, 1985. (in Russian)
24. Scire J., Lurmann F., Bass A., Hanna S. User’s Guide to the MESOPUFF II Model and Related Processor Programs. U.S. Environmental Protection Agency, Washington, EPA/600/8-84/013 (NTIS PB84181775), 1984.
25. Romberg W. Vereinfachte numerische integration. Det kongelige norske videnskabers selskab forhandlinger, Trondheim, 1955, vol. 28, no. 7, pp. 30-36. (in German)