Volume 15, no. 4Pages 20 - 31

Differential Equations of Elliptic Type with Variable Operators and Homogeneous Robin Boundary Value Condition in UMD Spaces

Rabah Haoua
In this article, we give new results on the study of elliptic abstract second order differential equation with variable operators coefficients under the general Robin homogeneous boundary value conditions, in the framework of UMD spaces. Here, we do not assume the differentiability of the resolvent operators. However, we suppose that the family of variable operators verifies the Labbas-Terreni assumption inspired by the sum theory and similar to the Acquistapace-Terreni one. We use Dunford calculus, interpolation spaces and semigroup theory in order to obtain existence, uniqueness and maximal regularity results for the classical solution to the problem.
Full text
Robin boundary value conditions; analytic semigroup; maximal regularity; Dunford operational calculus.
1. Haoua R., Medeghri A. Robin Boundary Value Problems for Elliptic Operational Differential Equations with Variable Operators. Electronic Journal of Differential Equations, 2015, vol. 2015, no. 87, pp. 1-19.
2. Labbas R. Problemes aux limites pour une equation differentielle abstraite de type elliptique. These de tat, Universite de Nice, 1987. (in French)
3. Balakrishnan A.V. Fractional Powers of Closed Operators and the Semigroups Generated by Them. Pacific Journal of Mathematics, 1960, vol. 10, pp. 419-437.
4. Carracedo M.C., Sanz Alix M. The Theory of Fractional Powers of Operators. N.Y., Elsevier Science, 2001.
5. Haase M. The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, 2006, vol. 169, pp. 19-60.
6. Labbas R., Terreni B. Sommes dope rateurs de type elliptique et parabolique. Bollettino dell'Unione Matematica Italiana, 1987, vol. 7, pp. 545-569. (in Italian)
7. Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Complete Abstract Differential Equations of Elliptic Type with General Robin Boundary Conditions, in UMD Spaces. Applicable Analysis, 2011, vol. 4, no. 3, pp. 523-538. DOI: 10.1080/00036811.2011.635653
8. Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Elliptic Problem with Robin Boundary Coefficient-Operator Conditions in General L^p Sobolev Spaces and Applications. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 3, pp. 56-77. DOI: 10.14529/mmp150304
9. Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Abstract Differential Equations of Elliptic Type wich General Robin Boundary Conditions in H'older Spaces. Applicable Analysis, 2012, vol. 91, no. 8, pp. 1453-1475. DOI: 10.1080/00036811.2011.635653
10. Bouziani F., Favini A., Labbas R., Medeghri A. Study of Boundary Value and Transmission Problems Governed by a Class of Variable Operators Verifying the Labbas-Terreni non Commutativity Assumption. Revista Matematica Complutense, 2011, vol. 24, pp. 131-168. DOI: 10.1007/s13163-010-0033-8
11. Da Prato G., Grisvard P. Sommes dope rateurs lineaires et equations differentielles operationnelles. Journal de Mathematiques Pures et Appliquees, 1975, vol. 54, pp. 305-387. (in French)
12. Boutaous F., Labbas R., Sadallah B.-K. Fractional-Power Approach for Solving Complete Elliptic Abstract Differential Equations with Variable-Operator Coefficients. Electronic Journal of Differential Equations, 2012, vol. 2012, no. 5, pp. 1-33.
13. Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A. Sturm - Liouville Problems for an Abstract Differential Equation of Elliptic Type in UMD Spaces. Differential and Integral Equations, 2008, vol. 21, no. 9, pp. 981-1000.
14. Triebel H. tInterpolation Theory, Function Spaces, Differential Operators. Amsterdam, Huthig Pub Limited, 1995.
15. Acquistapace P., Terreni B. A Unified Approach to Abstract Linear Non Autonomous Parabolic Equations. Rendiconti del Seminario Matematico della Universita di Padova, 1987, vol. 78, pp. 47-107.
16. Monniaux S. Generateur analytique et regularite maimale. Grade de docteur de l'universite de France-comte. (in French)
17. Agmon S., Douglis A., Niremberg L. Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. Communications on Pure and Applied Mathematics, 1959, vol. 12, pp. 623-727. DOI: 10.1002/cpa.3160120405
18. Labbas R., Moussaoui M. On the Resolution of the Heat Equation with Discontinous Coefficients. Semigroup Forum, 2000, vol. 60, pp. 187-201. DOI: 10.1007/s002339910013.