Volume 17, no. 4Pages 42 - 50

Magnetic Properties and Electronic Structure of Half-Heusler Alloys FeRhSb_1-xZ_x (Z = P, As, Sn, Si, Ge, Ga, In, Al)

O.O. Pavlukhina, V.D. Buchelnikov, V.V. Sokolovskiy, M.A. Zagrebin, I.S. Zotov
The electronic structure and magnetic properties of FeRhSb_1-xZ_x (x = 0, 0,25, 0,5, 0,75, 1) alloys with Z = P, As, Sn, Si, Ge, Ga, In, Al are studied by first-principles methods. For all compounds, three cubic phases with different atomic arrangement (alpha, beta, and gamma) are considered. It is shown that the beta-phase is energetically favorable for FeRhSb_1-xP_x(x = 0,75, 1), FeRhAs and FeRhSi alloys. For the remaining 29 alloys, the gamma phase is more energetically stable. The values of equilibrium lattice parameters and magnetic moments of stoichiometric ternary alloys are in good agreement with the literature values collected from other theoretical studies. The half-metallic ferromagnetic behavior is predicted for FeRhSb_0,25Sn_0,75, FeRhGe, FeRhSn, and FeRhSb_0,5Al_0,5. It has been found that the replacement of the Z element with another sp element allows for the creation of new four-component alloys that exhibit 100 % spin polarization.
Full text
Keywords
Heusler alloys; density of electronic states; half-metallic ferromagnets; density functional theory.
References
1. Sootsman J.R., Duck Young Chung, Kanatzidis M.G. New and Old Concepts in Thermoelectric Materials. Angewandte Chemie International Edition, 2009, vol. 48, no. 46, pp. 8616-8639. DOI: 10.1002/anie.200900598
2. Sakurada S., Shutoh N. Effect of Ti Substitution on the Thermoelectric Properties of (Zr,Hf) NiSn Half-Heusler Compounds. Applied Physics Letters, 2005, vol. 86, no. 6, article ID: 082105, 3 p. DOI: 10.1063/1.1868063
3. Kimura Y., Tamura Y., Kita T. Thermoelectric Properties of Directionally Solidified Half-Heusler Compound NbCoSn Alloys. Applied Physics Letters, 2008, vol. 92, no. 1, article ID: 012105, 3 p. DOI: 10.1063/1.2828713
4. Kuble J. Curie Temperatures of Zinc-Blende Half-Metallic Ferromagnets. Physical Review B, 2003, vol. 67, no. 22, article ID: 220403, 4 p. DOI: 10.1103/PhysRevB.67.220403
5. Ma Jianhua, Hegde V.I., Munira K., Xie Yunkun, Keshavarz S., Mildebrath D.T., Wolverton C., Ghosh A.W., Butler W.H. Computational Investigation of Half-Heusler Compounds for Spintronics Applications. Physical Review B, 2017, vol. 95, article ID: 024411, 25 p. DOI:10.1103/PhysRevB.95.024411
6. De Groot R. A., MuellerF. M., van Engen P.G., Buschow K.H.J. New Class of Materials: Half-Metallic Ferromagnets. Physics Review Letters, 1983, vol. 50, no. 25, pp. 2024-2027. DOI:10.1103/PhysRevLett.50.2024
7. Bennani M.A., Aziz Z., Terkhi S., Elandaloussi E.H., Bouadjemi B., Chenine D., Benidris M., Youb O., Bentata S. Structural, Electronic, Magnetic, Elastic, Thermodynamic and Thermoelectric Properties of the Half-Heusler RhFeX (with X = Ge, Sn) Compounds. Journal of Superconductivity and Novel Magnetism, 2021, vol. 34, no. 1, pp. 211-225. DOI: 10.1007/s10948-020-05677-x
8. Meenakshi R., Srinivasan R.A.S., Amudhavalli A., Rajeswarapalanichamy R., Iyakutti K. Electronic Structure, Magnetic, Optical and Transport Properties of Half-Heusler Alloys RhFeZ(Z=P, As, Sb, Sn, Si, Ge, Ga, In, Al) - a DFT Study. Phase Transitions, 2021, vol. 94, no. 6-8, pp. 415-435. DOI: 10.1080/01411594.2021.1944626
9. Yun Zhang, Xiaojie Xu. Machine Learning Modeling of Lattice Constants for Half-Heusler Alloys. AIP Advances, 2020, vol. 10, no. 4, article ID: 045121, 10 p. DOI: 10.1063/5.0002448
10. Muhammad I., Jian-Min Zhang, Alia A., Rehman M.U., Muhammad S. Structural, Mechanical, Thermal, Magnetic, and Electronic Properties of the RhMnSb Half-Heusler Alloy Under Pressure. Materials Chemistry and Physics, 2020, vol. 251, article ID: 123110, 9 p. DOI:10.1016/j.matchemphys.2020.123110
11. Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D. Segregation Tendency and Properties of FeRh_1-xPt_x Alloys. Journal of Magnetism and Magnetic Materials, 2022, vol. 556, no. 6, article ID: 169403, 9 p. DOI:10.1016/j.jmmm.2022.169403
12. Pavlukhina O.O., Sokolovskiy V.V., Zagrebin M.A., Buchelnikov V.D. Modeling of the Structural and Magnetic Properties of Fe-Rh-(Z) Z=(Mn, Pt) Alloys by First Principles Methods. Journal of Magnetism and Magnetic Materials, 2019, vol. 470, pp. 69-72. DOI: 10.1016/j.jmmm.2017.11.052
13. Kresse G., Furthmuller J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations using a Plane-Wave Basis Set. Physical Review B, 1996, vol. 54, no. 16, pp. 11169-11186. DOI: 10.1103/PhysRevB.54.11169
14. Kresse G., Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 1999, vol. 59, no. 3, pp. 1758-1775. DOI: 10.1103/PhysRevB.59.1758
15. Perdew J., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physics Review Letters, 1996, vol. 77, no. 18, pp. 3865-3868. DOI: 10.1103/PhysRevLett.77.3865
16. Ahmad R., Gul A., Mehmood N. Artificial Neural Networks and Vector Regression Models for Prediction of Lattice Constants of Half-Heusler Compounds. Materials Research Express, 2019, vol. 6, no. 4, article ID: 046517, 14 p. DOI:10.1088/2053-1591/aafa9f