Volume 18, no. 1Pages 92 - 103

Determination of the Time to Ignition for Samples from Pressed Tetranitropentaerythritol

N.I. Karmanov, O.V. Koynov, E.V. Pomykalov, S.V. Frolova
The article deals with the problem of determining the time to ignition for explosive tetranitropentaerythritol (TEN) under thermal exposure. TEN belongs to the class of nitroester explosives, which are characterized by low temperature resistance. The simplest thermal decomposition model, the simple autocatalysis model, was chosen for this explosive. This model describes the main aspects of thermal decomposition of nitroesters - the catalytic effect of decomposition products on the decomposition rate of the initial explosive. Based on the selected model, a method is proposed for determining kinetic parameters using known experimental data on static heating of spherical samples of compressed heating elements. This method includes two stages. At the first stage, kinetic parameters are preliminarily estimated using the expression for the induction period. Then these parameters are significantly refined during numerical calculations. An Arrhenius dependence of the activation energy on temperature is proposed to describe the entire set of experimental data. Using the obtained set of kinetic parameters and the selected thermal decomposition model, the results of experiments on dynamic heating of cylindrical heating element samples are satisfactorily described.
Full text
Keywords
ignition; thermal decomposition; ODTX; explosive; TEN; kinetic parameters; induction period.
References
1. Kondrikov B.N. Tehnologicheskaja bezopasnost' na styke vekov [Technological Safety at the Turn of the Century]. Moscow, Russian Chemical Technical University Named after D.I. Mendeleev, 2006. (in Russian)
2. Doherty R., Watt D. Insensitive Munition - Coming of Age. Proceedings of the 35th International Annual Conference ICT, Karlsruhe, 2004, vol. 086, pp. 1-12.
3. Zhilin, V.F., Zbarskij V.L., Judin N.V. Malochuvstvitel'nye vzryvchatye veshhestva [Insensitive Explosives]. Moscow, Russian Chemical Technical University Named after D.I. Mendeleev, 2008. (in Russian)
4. Asay B. Shock Wave Science and Technology Reference Library. Vol. 5. Non Shock Initiation of Explosives. Heidelberg, Dordrecht, London, New York, Springer, 2010. DOI: 10.1007/978-3-540-87953-4
5. Chidester S., Tarver C., Green L., Urtiew P. On the Violence of Thermal Explosion in Solid Explosives. Combustion and Flame, 1997, vol. 110, no. 1/2, pp. 264-280. DOI: 10.1016/S0010-2180(97)00071-0
6. McClelland M., Maienschein J., Howard W., Nichols A., de Haven M., Strand O. ALE3D Simulation of Heating and Violence in a Fast Cookoff Experiment with LX-10. Proceedings of the 13th International Detonation Symposium, Norfolk, 2006, pp. 606-617.
7. Beljaev A.F., Bobolev V.K., Korotkov A.I., Sulimov A.A., Chujko S.V. Perehod gorenija kondensirovannyh sistem vo vzryv [Transition of Combustion of Condensed Systems into Explosion]. Moscow, Nauka, 1973. (in Russian)
8. Ermolaev B.S., Sulimov A.A. Konvektivnoe Gorenie i Nizkoskorostnaja Detonacija Poristyh Jenergeticheskih Materialov [Convective Combustion and Low-Velocity Detonation of Porous Energetic Materials]. Moscow, Torus Press, 2017. (in Russian)
9. Dobratz B., Crawford P. LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants. Livermore, Lawrence Livermore National Laboratory, 1985.
10. Peter Cheazone Hsu, Hust G., Howard M., Maienschein J. The ODTX System for Thermal Ignition and Thermal Safety Study of Energetic Materials. Proceedings of the 14th International Detonation Symposium, Coeur d`Alene, 2010, pp. 984-990.
11. McGuire R., Tarver C. Chemical Decomposition Models for the Thermal Explosion of Confined HMX, TATB, RDX, and TNT Explosives. Proceedings of the 7th Symposium (International) on Detonation, Annapolis, 1981, pp. 56-64.
12. Tarver С., Tran T. Thermal Decomposition Models for HMX-Based Plastic Bonded Explo- sives. Combustion and Flame, 2004, vol. 137, no. 1, pp. 50-62. DOI: 10.1016/j.combustflame.2004.01.002
13. Tarver C., Tran T., Whipple R. Thermal Decomposition of Pentaerythritol Tetranit-rate. Propellants, Explosives, Pyrotechnics, 2003, vol. 28, no. 4, pp. 189-193. DOI: 10.1002/prep.200300004
14. Tarver C., Koerner J. Effects of Endothermic Binders on Times to Explosion of HMX- and TATB-Based Plastic Bonded Explosives. Journal of Energetic Materials, 2008, vol. 26, no. 1, pp. 1-28. DOI: 10.1080/07370650701719170
15. Rjabinin V.K. Matematicheskaja teorija gorenija [Mathematical Theory of Combustion]. Chelyabinsk, SUSU Publishing Center, 2014. (in Russian)
16. McClelland M., Glascoe E., Nichols A., Schofield S., Springer H. ALE3D Simulation of Incompressible Flow, Heat Transfer and Chemical Decomposition of Comp В in Slow Cookoff Experiments. Proceedings of the 15th International Detonation Symposium, San Francisco, 2014, pp. 1196-1206.
17. Zuev Ju.S., Karmanov N.I., Nedospasova E.V. [Determination of Kinetic Parameters for Solid Octogen-Containing Explosives Based on the Results of ODTX Experiments]. Vestnik Koncerna VKO ``Almaz - Antej'', 2018, vol. 25, no. 2, pp. 53-59. (in Russian)
18. Zuev Ju.S., Karmanov N.I. [Determination of Kinetic Parameters for Solid Octogen-Containing Explosives based on the Results of ODTX Experiments]. Vestnik Koncerna VKO ``Almaz - Antej'', 2019, vol. 29, no. 2, pp. 57-63. (in Russian)
19. Orlenko L.P. Fizika vzryva. Tom I. [Explosion Physics. Vol. I]. Moscow, FIZMATLIT, 2004. (in Russian)
20. Andreev K.K. Termicheskoe razlozhenie i gorenie vzryvchatyh veshhestv [Thermal Decomposition and Combustion of Explosives]. Moscow, Nauka, 1966. (in Russian)
21. Hoobs M., Wente W., Kaneshige M. PETN Ignition Experiments and Models. Journal of Physical Chemistry A, 2010, vol. 114, no. 16, pp. 5306-5319.
22. Hoobs M., Wente W., Kaneshige M. Correlating Cookoff Violence with Pre-Ignition Damage. Proceedings of the 14th International Detonation Symposium, Coeur d`Alene, 2010, pp. 164-173.