Volume 18, no. 4Pages 74-85

Numerical Study of Acoustic Scattering on a Soundproof Spheres System by the Orthogonal Central Composite Design Method

E.Sh. Nasibullaeva
To study the mechanism of acoustic wave scattering on a soundproof spheressystem, a numerical technique based on the orthogonal central compositional design method is developed, which allows varying several parameters of the system to determine the contribution of each of them to the calculated value. The method is implemented for a three-factor computational experiment with two variable physical (wave radius and complex admittance) and one geometric (minimum distance between sphere centers) parameters. For the obtained regression equation, the significance of the coefficients is checked by Student's t-criterion and the adequacy of the model by Fisher's F-criterion for two simple types of configurations and three values of the number of spheres in them, as well as the search for optimal values of the objective function (normalized pressure at a fixed point in space). For each case considered, significant and insignificant factors are established and the parameters at which the objective functions achieve the greatest (least) value are determined. The analysis carried out allowed us to determine the parameters at which of increase and decrease pressure zone sare observed behind the system of spheres.
Full text
Keywords
soundproof spheres system; acoustic scattering; computational experiment; orthogonal central composite design method; regression model.
References
1. Grinchenko V.T., Vovk I.V., Macypura V.T. Osnovy akustiki [Basics of Acoustics]. Kiev, Naukova Dumka, 2009. (in Russian)
2. Nasibullaeva E.Sh. Simulation of Acoustic Scattering from a Set of Sound-permeable Spheres in 3D Space. Computational Technologies, 2022, vol. 27, no. 2, pp. 19-36. DOI:10.25743/ICT.2022.27.2.003
3. Fisher R.A. The Design of Experiments, 9th Edition. New York, Hafner Press, 1971.
4. Nalimov V.V. Teoriya eksperimenta [Theory of Experiment]. Moscow, Nauka, 1971. (in Russian)
5. Fedorov V.V. Teoriya optimal'nogo eksperimenta [Theory of Optimal Experiment]. Moscow, Nauka, 1971. (in Russian)
6. Schenck H. Theories of Engineering Experimentation.! New York,! McGraw-Hill Book Company,! 1961.
7. Adler Yu.P., Markova E.V., Granovskiy Yu.V. Planirovanie eksperimenta pri poiske optimal'nyh uslovij [Designing an Experiment to Find Optimal Conditions]. Moscow, Nauka, 1976. (in Russian)
8. Volodarsky E.T., Malinovsky B.N., Tuz Yu.M. Planirovaniye i Organizatsiya Izmeritel'nogo Eksperimenta [Designing and Organizing a Measurement Experiment]. Kiev, Vysshaya shkola, 1987. (in Russian)
9. Blokhin A.V. Teoriya eksperimenta. Kurs lekcij [Theory of Experiment. Lecture Course]. Minsk, Belorusskiy Gosudarstvennyy Universitet, 2002. (in Russian)
10. Petkov A.A. Ortogonal'noye tsentral'noye kompozitsionnoye planirovaniye v tekhnike i elektrofizike vysokikh napryazheniy [Orthogonal Central compositional Designing in Technology and High Voltage Electrophysics]. Kharkov, NTU "KhPI", 2007. (in Russian)
11. Rebrova I.A. Planirovaniye eksperimenta [Designing an Experiment]. Omsk, SibADI, 2010. (in Russian)
12. Kazakov A.V. Planirovaniye eksperimenta i izmereniye fizicheskikh velichin [Designing an Experiment and Measuring Physical Quantities]. Perm, Izdatel'stvo Permskogo natsional'nogo isssledel'skogo politekhnicheskogo universiteta, 2014. (in Russian)
13. Oyejola B.A., Nwanya J.C. Selecting the Right Central Composite Design. International Journal of Statistics and Applications, 2015, vol. 5, no. 1, pp. 21-30. DOI: 10.5923/j.statistics.20150501.04
14. Nasibullayev I.Sh. The Development of a Computer Model for the Main Element of the Fuel Metering Unit. Computational Technologies, 2016, vol. 21, no. 2, pp. 26-41.
15. Gumerov N.A., Duraiswami R. Computation of Scattering from N Spheres using Multipole Reexpansion. The Journal of the Acoustical Society of America, 2002, vol. 112, no. 6, pp. 2688-2701.
16. Vladimirov V.S. Equations of Mathematical Physics. New York, Marcell Dekker Incoporated, 1971.
17. Korn G.A., Korn Th.M. Mathematical Handbook for Scientists and Engineers. New York, McGraw Hill Book Company, 1968.
18. Nasibullaeva E.Sh. Numerical Analysis of Multiple Scattering of an Acoustic Wave on a Set of Sound-Permeable Spheres in 3D Space. Computational Continuum Mechanics, 2022, vol. 15, no. 4, pp. 383-398. DOI: 10.7242/1999-6691/2022.15.4.29
19. Nasibullayev I.Sh. Application of Free Software for Processing and Visualization of Scientific Research Results. Multiphase Systems, 2021, vol. 16, no. 2, pp. 58-71. DOI: 10.21662/mfs2021.3.016
20. Doerffel K. Statistik in der analytischen chemie. Leipzig, Deutscher Verlag fur Grundstoffindustrie, 1966. (in German)
21. Nasibullaeva E.Sh. Terms Number Determination at the Series Truncation for the Numerical Solution of the Problem of Acoustic Scattering from a Sound-Permeable Spheres Set. Multiphase Systems, 2020, vol. 15, no. 3-4, pp. 176-182. DOI: 10.21662/mfs2020.3.128
22. Duda R.O., Martens W.L. Range Dependence of the Response of a Spherical Head Model. The Journal of the Acoustical Society of America, 1998, vol. 104, no. 5, pp. 3048-3058. DOI: 10.1109/ASPAA.1997.625597