№ 18 (277), выпуск 12Страницы 13 - 19 Фазовое пространство модифицированного уравнения Буссинеска
А.А. Замышляева, Е.В. БычковВ статье доказана однозначная разрешимость задачи Коши для полулинейного уравнения соболевского типа второго порядка. В работе используются идеи и техника, разработанные Свиридюком Г.А. при исследовании задачи Коши для полулинейного уравнения соболевского типа первого порядка, и Замышляевой А.А. при решении задачи Коши для линейного уравнения соболевского типа высокого порядка. В работе так же используется теория дифференцируемых банаховых многообразий, которая окончательно оформилась в работах С. Ленга. В качестве приложения приведена начально-краевая задача для модифицированного уравнения Буссинеска. Рассмотрено два случая - первый, когда оператор L при старшей производной по времени непрерывно обратим, тогда для любой точки из касательного расслоения исходного банахова пространства существует единственное решение, лежащее в этом пространстве как траектория. Особое внимание было уделено второму случаю, когда оператор L не является непрерывно обратимым, тогда уравнение Буссинеска является вырожденным, и было построено для него локальное фазовое пространство. Приводятся условия, при которых фазовое пространство данного уравнения является простым банаховым многообразием.
Полный текст- Ключевые слова
- фазовое пространство, уравнение соболевского типа, относительно спектрально ограниченный оператор, банахово многообразие.
- Литература
- 1. Wang, S. Small amplitude solutions of the generalized IMBq equation/ S. Wang, G. Chen // Mathematical Analysis and Application. - 2002. - V. 274. - P. 846 - 866.
2. Архипов, Д.Г. Новое уравнение для описания неупругого взаимодействия нелинейных локализованых волн в диспергирующих средах / Д.Г. Архипов, Г.А. Хабахпашев // Письма в ЖЭТФ. - 2011. - Т. 93, № 8. - С. 469 - 472.
3. Свиридюк, Г.А. Фазовые пространства одного класса операторных полулинейных уравнений типа Соболева / Г.А. Свиридюк, Т.Г. Сукачева// Дифференц. уравнения. - 1990. - Т. 26, № 2. - С. 250 - 258.
4. Загребина, С.А. О задаче Шоуолтера - Сидорова / С.А. Загребина // Изв. вузов. Математика. - 2007.- № 3. - С. 22 - 28.
5. Келлер, А.В. Численное решение задачи стартового управления для системы уравнений леонтьевского типа / А.В. Келлер // Обозрение приклад. и пром. математики. - 2009. -Т. 16, № 2. - С. 345 - 346.
6. Манакова, Н.А. Задача оптимального управления для уравнения Осколкова нелинейной фильтрации / Н.А. Манакова // Дифференц. уравнения. - 2007. -Т. 43, № 9. - С. 1185 - 1192.
7. Sviridyuk, G.A. Linear Sobolev type equations and degenerate semigroups of operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; K'oln; Tokyo: VSP, 2003.
8. Ленг, С. Введение в теорию дифференцируемых многообразий / C. Ленг. - М.: Мир, 1967.
9. Ниренберг, Л. Лекции по нелинейному функциональному анализу / Л. Ниренберг. - М.: Мир, 1980.
10. Хэссард, Б. Теория и приложения бифуркации рождения цикла / Б. Хэссард, Н. Казаринов, И. Вэн.- М.: Мир, 1985.
11. Свиридюк, Г.А. Фазовое пространство одной обобщенной модели Осколкова / Г.А. Свиридюк, В.О. Казак // Сиб. матем. журн. - 2003. - T. 44, № 5. - C. 1124 - 1131.