№ 18 (277), выпуск 12Страницы 13 - 19

Фазовое пространство модифицированного уравнения Буссинеска

А.А. Замышляева, Е.В. Бычков
В статье доказана однозначная разрешимость задачи Коши для полулинейного уравнения соболевского типа второго порядка. В работе используются идеи и техника, разработанные Свиридюком Г.А. при исследовании задачи Коши для полулинейного уравнения соболевского типа первого порядка, и Замышляевой А.А. при решении задачи Коши для линейного уравнения соболевского типа высокого порядка. В работе так же используется теория дифференцируемых банаховых многообразий, которая окончательно оформилась в работах С. Ленга. В качестве приложения приведена начально-краевая задача для модифицированного уравнения Буссинеска. Рассмотрено два случая - первый, когда оператор L при старшей производной по времени непрерывно обратим, тогда для любой точки из касательного расслоения исходного банахова пространства существует единственное решение, лежащее в этом пространстве как траектория. Особое внимание было уделено второму случаю, когда оператор L не является непрерывно обратимым, тогда уравнение Буссинеска является вырожденным, и было построено для него локальное фазовое пространство. Приводятся условия, при которых фазовое пространство данного уравнения является простым банаховым многообразием.
Полный текст
Ключевые слова
фазовое пространство, уравнение соболевского типа, относительно спектрально ограниченный оператор, банахово многообразие.
Литература
1. Wang, S. Small amplitude solutions of the generalized IMBq equation/ S. Wang, G. Chen // Mathematical Analysis and Application. - 2002. - V. 274. - P. 846 - 866.
2. Архипов, Д.Г. Новое уравнение для описания неупругого взаимодействия нелинейных локализованых волн в диспергирующих средах / Д.Г. Архипов, Г.А. Хабахпашев // Письма в ЖЭТФ. - 2011. - Т. 93, № 8. - С. 469 - 472.
3. Свиридюк, Г.А. Фазовые пространства одного класса операторных полулинейных уравнений типа Соболева / Г.А. Свиридюк, Т.Г. Сукачева// Дифференц. уравнения. - 1990. - Т. 26, № 2. - С. 250 - 258.
4. Загребина, С.А. О задаче Шоуолтера - Сидорова / С.А. Загребина // Изв. вузов. Математика. - 2007.- № 3. - С. 22 - 28.
5. Келлер, А.В. Численное решение задачи стартового управления для системы уравнений леонтьевского типа / А.В. Келлер // Обозрение приклад. и пром. математики. - 2009. -Т. 16, № 2. - С. 345 - 346.
6. Манакова, Н.А. Задача оптимального управления для уравнения Осколкова нелинейной фильтрации / Н.А. Манакова // Дифференц. уравнения. - 2007. -Т. 43, № 9. - С. 1185 - 1192.
7. Sviridyuk, G.A. Linear Sobolev type equations and degenerate semigroups of operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; K'oln; Tokyo: VSP, 2003.
8. Ленг, С. Введение в теорию дифференцируемых многообразий / C. Ленг. - М.: Мир, 1967.
9. Ниренберг, Л. Лекции по нелинейному функциональному анализу / Л. Ниренберг. - М.: Мир, 1980.
10. Хэссард, Б. Теория и приложения бифуркации рождения цикла / Б. Хэссард, Н. Казаринов, И. Вэн.- М.: Мир, 1985.
11. Свиридюк, Г.А. Фазовое пространство одной обобщенной модели Осколкова / Г.А. Свиридюк, В.О. Казак // Сиб. матем. журн. - 2003. - T. 44, № 5. - C. 1124 - 1131.