№ 27 (286), выпуск 13Страницы 128 - 132

Численное решение задачи оптимального управления для одной линейной модели Хоффа на графе

А.Г. Дыльков
В работе рассматривается задача оптимального управления решениями одной неклассической задачи для уравнений Хоффа, заданных на конечном связном ориентированном графе. Данную задачу мы редуцируем к начально-конечной задаче для абстрактного уравнения соболевского типа, подобрав соответствующим образом функциональные пространства. Нами установлено существование и единственность сильного решения начально-конечной задачи для линейного уравнения соболевского типа. Показано существование и единственность оптимального управления решениями данной задачи. Полученные абстрактные результаты применены к одной линейной модели Хоффа на графе, и установлены существование и единственность решения задачи оптимального управления. В статье представленны результаты вычислительного эксперимента, основанного на полученных теоретических данных. Для построения приближенных решений используется метод Галеркина. В работе используются идеи и методы, разработанные Г.А. Свиридюком и его учениками.
Полный текст
Ключевые слова
уравнения соболевского типа, начально-конечная задача, оптимальное управление, линейное уравнение Хоффа.
Литература
1. Загребина, С.А. Многоточечная начально-конечная задача для линейной модели Хоффа / С.А. Загребина // Вестн. Юж.-Урал. гос. ун-та. Серия "Математическое моделирование и программирование". - 2012. - № 5 (264), вып. 11. - С. 4-12.
2. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; Koln; Tokyo: VSP, 2003.
3. Шестаков, А.Л. Оптимальное измерение динамически искаженных сигналов / А.Л. Шестаков, Г.А. Свиридюк // Вестн. Юж.-Урал. гос. ун-та. Серия "Математическое моделирование и программирование". - 2011. - № 17 (234), вып. 8. - С. 70-75.
4. Манакова, Н.А. Об одной задаче оптимального управления с функционалом качества общего вида / Н.А. Манакова, А.Г. Дыльков // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. - 2011. - Вып. 4 (25). - С. 18-24.