№ 17 (234), выпуск 8 Страницы 70 - 75 Optimal Measurement of Dynamically Distorted Signals
A.L. Shestakov, G.A. SviridyukПредложен новый подход к измерению сигнала, искаженного не только инерционностью измерительного устройства, но и его резонансами.
Полный текст- Ключевые слова
- оптимальное измерение, динамически искаженные сигналы, резонансы, оптимальное управление, системы леонтьевского типа.
- Литература
- 1. Granovskii, V.A. Dynamic Measurements / V.A. Granovskii. - Leningrad: Energoizdat, 1984. (in Russian)
2. Shestakov, A.L. Dynamic accuracy of measurement transduser with a sensor-model based compensating divice / А.L. Shestakov // Меtrology. - 1987. - № 2. - С. 26 - 34. (in Russian)
3. Derusso, P.M. State Variables for Engineers /P.M. Derusso, R.J. Roy, C.M. Close. - N.-Y.; London; Sydney: Wiley, 1965.
4. Shestakov, A.L. Dynamic error correction method / A.L. Shestakov // IEEE Transactions on Instrumentation and Measurement. - 1996. - V. 45, № 1. - P. 250 - 255.
5. Shestakov, A.L. A new approach to measurement of dinamically distorted signal / A.L. Shestakov, G.A. Sviridyuk // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - № 16 (192), vyp. 5. - P. 116 - 120. (in Russian)
6. Кеller, А.V. The regularization property and the computational solution of the dynanic measure problem / А.V. Кеller, Е.I. Nazarova // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - № 16 (192), vyp. 5. - P. 32 - 38. (in Russian)
7. Bizyaev, М.N. Dynamic models and algorithms for restoring the dynamically destorted signals in measuring systems using in sliding modesе [Text]: Ph.D. Thesis: 05.13.01 / М.N. Bizyaev. - Chelyabinsk, 2004.- 179 с. (in Russian)
8. Iosifov, D.Y. Dynamic models and signal restoration algorithms for measurements systems with observable state vector: Ph.D. Thesis: 05.13.01 / D.Y. Iosifov. - Chelyabinsk, 2007. (in Russian)
9. Shestakov, А.L. Dynamical measurement as an optimal control problem / А.L. Shestakov, G.А. Sviridyuk, Е.V. Zaharova // Obozrenie prikladnoy i promishlennoy matematiki. - 2009. - Т. 16, vyp. 4. - С. 732 - 733. (in Russian)
10. Sviridyuk, G.A. Numerical solutions of systems of equations of Leontieff type / G.A. Sviridyuk, S.V. Brychev // Rus. Math. - 2003. - V. 47, № 8. - P.44 - 50.(in Russian)
11. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semi-groups of Operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; Koln; Tokyo: VSP, 2003.
12. Sviridyuk, G.A. The Showalter-Sidorov problem as a phenomenon of the Sobolev type equations / G.А. Sviridyuk, S.А. Zagrebina // Izvestia ISU. Seriya "Mathematics". - Irkutsk, 2010. - Т. 3, № 1. - С. 104 - 125. (in Russian)
13. Zamyshlyaeva, А.A. The initial-finish value problem for the Boussinesque-Love equation defined on graph / А.А. Zamyshlyaeva, А.V. Yuzeeva // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - № 16 (192), vyp. 5. - P. 23 - 31. (in Russian)
14. Manakova, N.A. Optimal control to solutions of the Showalter-Sidorov problem for a Sobolev type equation / N.А. Маnакоvа, Е.А. Bogonos // Izvestia ISU. Seriya "Mathematics". - Irkutsk, 2010. - Т. 3, № 1. - С. 42 - 53. (in Russian)
15. Zagrebina, S.A. About Showalter-Sidorov problem / S.А. Zаgrеbinа // Izvestia VUZ. Mathematics. - 2007.- № 3.-С. 22 - 28. (in Russian)
16. Fedorov, V.Е. Optimal control problem for one class of degenerate equations / V.Е. Fedorov, М.V. Plehanova // Izvestia RAN. Theory and systems of control. - 2004. -Т. 9, № 2. - C. 92 - 102. (in Russian)
17. Кеller, А.V. A numerical solving optimal control problem for degenerate linear systems of ordinary differential equations type system with Showalter-Sidorov initial condition / А.V. Кеller // Vestn. SUSU, seriya "Mathematicheskoe modelirovanie i programmirovanie". - 2010. - №27 (127). vyp. 2. - P. 50 - 56. (in Russian)