Том 8, № 2Страницы 133 - 137 Метод декомпозиции в задаче оптимального управления для полулинейных моделей соболевского типа
Н.А. МанаковаВ связи с большим количеством приложений на первый план выходит вопрос о численном решении задач оптимального управления. В случае нелинейного уравнения состояния поиск численного решения задачи оптимального управления значительно затрудняется. Одним из подходов к решению данной проблемы является метод декомпозиции. Этот метод позволяет линеаризовать исходное уравнение и весь феномен нелинейности перенести на функционал качества, что в значительной степени позволяет упростить численную схему нахождения приближенного решения задачи оптимального управления. В статье рассмотрен метод декомпозиции для задачи оптимального управления решениями полулинейной модели соболевского типа.
Полный текст- Ключевые слова
- уравнения соболевского типа; оптимальное управление; метод декомпозиции.
- Литература
- 1. Свиридюк, Г.A. Задача Шоуолтера - Сидорова как феномен уравнений соболевского типа / Г.А. Свиридюк, С.А. Загребина // Известия Иркутского государственного университета. Серия: Математика. - 2010. - Т. 3, № 1. - С. 104-125.
2. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; Koln: VSP, 2003.
3. Манакова, Н.А. Задача оптимального управления для уравнения Осколкова нелинейной фильтрации / Н.А. Манакова // Дифференциальные уравнения. - 2007. - Т. 43, № 9. - С. 1185-1192.
4. Лионс, Ж.-Л. Управление сингулярными распределенными системами / Ж.-Л. Лионс. - М.: Наука, 1987.
5. Лионс, Ж.-Л. Некоторые методы решения нелинейных краевых задач / Ж.-Л. Лионс. - М.: Мир, 1972.